Eugenia-Maria Kontopoulou \& Petros Drineas<br>Computer Science, Purdue University

## LogDet Problem

Given an SPD matrix $A \in \mathbb{R}^{n \times n}$, compute (exactly or approximately) $\log \operatorname{det}(A)$.

Additive Error Approximation
Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix. For any $\alpha$ with $\lambda_{1}(\mathbf{A})<\alpha$, define $\mathbf{B}=\mathbf{A} / \alpha$ and $\mathbf{C}=\mathbf{I}_{n}-B$. Then, $\log \operatorname{det}(A)=n \log (\alpha)-\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left(\log \left(\mathbf{C}^{k}\right)\right)}{k}$.

## Aloorithm 1

Input: $\mathbf{A} \in \mathbb{R}^{n \times n}$, accuracy parameter $\epsilon>0$, integer $m>0$.

- Compute an estimate to the largest eigenvalue of
$\mathbf{A}, \lambda_{1}(\mathbf{A})$, using the Power Method.
- $\mathbf{C}=\mathbf{I}_{n}-\mathbf{A} /\left(7 \lambda_{1}(\tilde{A})\right)$
©Create $p=\left\lceil 20 \log (2 / \delta) / \epsilon^{2}\right\rceil$ i.i.d random Gaussian vectors, $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p}$.
© Estimate $\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left(\log \left(\mathrm{C}^{\mathrm{b}}\right)\right)}{k}$ with a truncated Taylor Series type randomized trace estimator that computes $\sum_{k=1}^{m}\left(\frac{1}{p} \Sigma_{i=1}^{p} \mathbf{g}_{i}^{\top} \mathbf{C}^{k} \mathbf{g}_{i}\right)$

Let $\widehat{\log \operatorname{det}}(\mathbf{A})$ be the $\log \operatorname{det}$ approximation of the above procedure. Then, we prove that with probability at least $1-2 \delta$,

$$
|\widehat{\log \operatorname{det}}(\mathbf{A})-\log \operatorname{det}(A)| \leq 2 \epsilon \Gamma
$$

where $\Gamma=\sum_{i=1}^{n} \log \left(7 \cdot \frac{\lambda_{1}(\mathbf{A})}{\lambda_{i}(\mathbf{A})}\right)$ and $m \geq\left\lceil 7 \kappa(\mathbf{A}) \log \left(\frac{1}{\epsilon}\right)\right\rceil$.
Relative Error Approximation
Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix whose eigenvalues lie in the interval $\left(\theta_{1}, 1\right)$, for some $0<\theta_{1}<1$. Let $\mathbf{C}=\mathbf{I}_{n}-A$. Then, $\log \operatorname{det}(A)=-\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left(\log \left(\mathbf{C}^{k}\right)\right)}{k}$.

## Algorithm 2

Input: $\mathbf{A} \in \mathbb{R}^{n \times n}$, accuracy parameter $\epsilon>0$, integer $m>0$.
(1) $\mathbf{C}=\mathbf{I}_{n}-\mathbf{A}$
(2) Create $p=\left\lceil 20 \log (2 / \delta) / \epsilon^{2}\right\rceil$ i.i.d random Gaussian vectors, $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p}$.
(3) Estimate $\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left(\log \left(\mathbf{C}^{k}\right)\right)}{k}$ with a truncated Taylor Series type randomized trace estimator that computes $\sum_{k=1}^{m}\left(\frac{1}{p} \sum_{i=1}^{p} \mathbf{g}_{i}^{\top} \mathbf{C}^{k} \mathbf{g}_{i}\right)$

Let $\widehat{\log \operatorname{det}}(\mathbf{A})$ be the log det approximation of the above procedure on inputs $\mathbf{A}$ and $\epsilon$. Then, we prove that with probability at least $1-\delta$,

$$
|\widehat{\log \operatorname{det}}(\mathbf{A})-\log \operatorname{det}(A)| \leq 2 \epsilon \cdot|\log \operatorname{det}(\mathbf{A})| .
$$

## Citation

C. Boutsidis, P. Drineas, P. Kambadur, E. Kontopoulou, A. Zouzias (2016), A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix, under review at Journal of Linear Algebra and its Applications.
ArXiv: https://arxiv.org/abs/1503.00374

Sparse PCA

Given a centered matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ (the mean of its columns is zero), we seek for a vector $\mathbf{w}_{\text {opt }}$ that solves the optimization problem:
$\underset{\mathbf{w}}{\operatorname{maximize}} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}$
subject to $\|\mathbf{w}\|_{0} \leq k,\|\mathbf{w}\|_{2} \leq 1, \mathbf{w} \in \mathbb{R}^{n}$.
This problem is NP-hard $\rightarrow$ relax to a problem with convex constraints (but non-convex objective)
$\underset{\mathbf{w}}{\operatorname{maximize}} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}$
subject to $\|\mathbf{w}\|_{1} \leq \sqrt{k},\|\mathbf{w}\|_{2} \leq 1, \mathbf{w} \in \mathbb{R}^{n}$

## A loorithm

Phase 1: Compute a stationary point $\tilde{\mathbf{w}}_{\text {opt }}$
(1) Compute the gradient and make a gradient step.
(2) Project onto the $l_{1}$ ball with radius $\sqrt{k}\left(\|\mathbf{w}\|_{1}\right)$.
(3) Repeat until a threshold for the relative error is exceeded.
Phase 2: Invoke a randomized rounding strategy
(1) Create a Bernoulli distribution and randomly round the entries of $\mathbf{w}$
(2) Repeat the experiment 10 times and keep the best sparsification.

We prove the following:
Let $\mathbf{w}_{\text {opt }}$ be the optimal solution of the Sparse PCA problem (1) satisfying $\left\|\mathbf{w}_{\text {opt }}\right\|_{2}=1$ and $\left\|\mathbf{w}_{\text {opt }}\right\|_{0} \leq k$. Let $\hat{\mathbf{w}}_{\text {opt }}$ be the vector returned when the rounding sparsification strategy is applied on the optimal solution $\tilde{\mathbf{w}}_{\text {opt }}$ of the optimization problem (1), with $s=200 k / \epsilon^{2}$, where $\epsilon \in(0,1]$ is an accuracy parameter. Then, $\hat{\mathbf{w}}_{\text {opt }}$ has the following properties:
(1) $\mathbb{E}\left\|\hat{\mathbf{w}}_{\text {opt }}\right\|_{0} \leq s$.
(2With probability at least $3 / 4$,

$$
\left\|\hat{\mathbf{w}}_{\text {opt }}\right\|_{2} \leq 1+0.15 \epsilon
$$

(3) With probability at least $3 / 4$,

$$
\hat{\mathbf{w}}_{o p t}^{\top} \mathbf{A} \hat{\mathbf{w}}_{o p t} \geq \mathbf{w}_{o p t}^{\top} \mathbf{A} \mathbf{w}_{o p t}-\epsilon
$$

Citation
K. Fountoulakis, A. Kundu, E. Kontopoulou, P. Drineas (2016), A Randomized Rounding Algorithm for Sparse $P C A$, under review at ACM Transactions on Knowledge Discovery from Data.
ArXiv: https://arxiv.org/abs/1508.03337
Experiments


Krylov Methods

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a starting guess matrix $\mathbf{X} \in \mathbb{R}^{n \times s}$, we want to use the block Krylov space $\mathcal{K}_{q}\left(\mathbf{A A}^{\top}, \mathbf{A X}\right)$ to approximate the left singular vector space of $\mathbf{A}$.
We prove:

- Spectral \& Frobenius bounds for the distance between the approximate and the actual space.
- Quality measurements of the bounds relative to the best low-rank approximation.


## Theorem

Let $\phi(x)$ be a polynomial of degree $2 q+1$ with odd powers only, such that $\phi\left(\boldsymbol{\Sigma}_{k}\right)$ is nonsingular. If $\operatorname{rank}\left(\mathbf{V}_{k}^{\top} \mathbf{X}\right)=k$ then
$\| \sin \boldsymbol{\Theta}\left(\mathcal{K}_{q}, \mathbf{U}_{k}\left\|_{2, F} \leq\right\| \phi\left(\boldsymbol{\Sigma}_{k, \perp}\right)\left\|_{2}\right\| \phi\left(\boldsymbol{\Sigma}_{k}\right)^{-1}\left\|_{2}\right\| \mathbf{V}_{k, \perp}^{\top} \mathbf{X}\left(\mathbf{V}_{k}^{\top} \mathbf{X}\right)^{\dagger} \|_{2, F}\right.$.
If, in addition, $\mathbf{X}$ has orthonormal or linearly independent columns, then
$\left\|\mathbf{V}_{k, \perp}^{\top} \mathbf{X}\left(\mathbf{V}_{k}^{\top} \mathbf{X}\right)^{\dagger}\right\|_{2, F}=\left\|\tan \boldsymbol{\Theta}\left(\mathbf{X}, \mathbf{V}_{k}\right)\right\|_{2, F}$ and
$\left\|\sin \boldsymbol{\Theta}\left(\mathcal{K}_{q}, \mathbf{U}_{k}\right)\right\|_{2, F} \leq\left\|\phi\left(\boldsymbol{\Sigma}_{k, \perp}\right)\right\|_{2}\left\|\phi\left(\boldsymbol{\Sigma}_{k}\right)^{-1}\right\|_{2}\left\|\tan \boldsymbol{\Theta}\left(\mathbf{X}, \mathbf{V}_{k}\right)\right\|_{2, F}$.
where $\boldsymbol{\Theta}\left(\mathcal{K}_{q}, \mathbf{U}_{k}\right) \in \mathbb{R}^{k \times k}$ is the diagonal matrix of principal angles between $\mathcal{K}_{q}$ and range $\left(\mathbf{U}_{k}\right)$.

Theorem
Let $\phi(x)$ be a polynomial of degree $2 q+1$ with odd powers only, such that $\phi\left(\boldsymbol{\Sigma}_{k}\right)$ is nonsingular and $\phi\left(\sigma_{i}\right) \geq \sigma_{i}$, for $1 \leq i \leq k$. If $\operatorname{rank}\left(\mathbf{V}_{k}^{\top} \mathbf{X}\right)=k$ then for $1 \leq i \leq k$,

$$
\begin{gathered}
\left\|A-\hat{\mathbf{U}}_{i} \hat{\mathbf{U}}_{i}^{\top} A\right\|_{F} \leq\left\|\mathbf{A}-\mathbf{A}_{i}\right\|_{F}+\Delta \\
\left\|A-\hat{\mathbf{U}}_{i} \hat{\mathbf{U}}_{i}^{\top} A\right\|_{2} \leq\left\|\mathbf{A}-\mathbf{A}_{i}\right\|_{2}+\Delta \\
\sigma_{i}-\Delta \leq\left\|\hat{u}_{i}^{\top} A\right\|_{2} \leq \sigma_{i}
\end{gathered}
$$

If, in addition, $\mathbf{X}$ has orthonormal columns, then:

$$
\Delta=\left\|\phi\left(\boldsymbol{\Sigma}_{k, \perp}\right)\right\|_{2}\left\|\tan \boldsymbol{\Theta}\left(\mathbf{X}, \mathbf{V}_{k}\right)\right\|_{F}
$$

Citation
I. Ipsen, P. Drineas, E. Kontopoulou, M. Magdon-Ismail (2016), Structural Convergence Results for Low-Rank Approximations from Block Krylov Spaces, submitted to SIAM Journal on Matrix Analysis and Applications.

LogDet Experiments

| name | $n$ | $n n z$ | area of origin |
| :---: | :---: | :---: | :---: |
| thermal2 | 1228045 | 8580313 | Thermal |
| ecology2 | 999999 | 4995991 | $2 \mathrm{D} / 3 \mathrm{D}$ |
| ldoor | 952203 | 42493817 | Structural |
| thermomech_TC | 102158 | 711558 | Thermal |
| boneS01 | 127224 | 5516602 | Model reduction |


| logdet (A) |  |  | time (sec) |  | $m$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| exact | approx |  | exact | approx |  |
|  | mean | std |  | mean |  |
| 1.3869 e 6 | 1.3928 e 6 | 964.79 | 31.28 | 31.24 | 149 |
| 3.3943 e 6 | 3.403 e 6 | 1212.8 | 18.5 | 10.47 | 125 |
| 1.4429 e 7 | 1.4445 e 7 | 1683.5 | 117.91 | 17.60 | 33 |
| -546787 | -546829.4 | 553.12 | 57.84 | 2.58 | 77 |
| 1.1093 e 6 | 1.106 e 6 | 247.14 | 130.4 | 8.48 | 125 |

