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LogDet Problem

Given an SPD matrix A ∈ Rn×n, compute (exactly or ap-
proximately) log det (A).

Additive Error Approximation

Let A ∈ Rn×n be an SPD matrix. For any α with
λ1(A) < α, define B = A/α and C = In −B. Then,

log det(A) = n log(α)−
∞∑
k=1

Tr
(
log (Ck)

)
k

.

Algorithm 1
Input: A ∈ Rn×n, accuracy parameter ε > 0, integer
m > 0.

1 Compute an estimate to the largest eigenvalue of
A, ˜λ1(A), using the Power Method.

2 C = In −A/(7 ˜λ1(A))
3 Create p = d20 log(2/δ)/ε2e i.i.d random Gaussian
vectors, g1,g2, . . . ,gp.

4 Estimate ∑∞k=1
Tr(log (Ck))

k with a truncated Taylor Series
type randomized trace estimator that computes∑m
k=1

(
1
p

∑p
i=1 g>i Ckgi

)

Let l̂og det(A) be the log det approximation of the above
procedure. Then, we prove that with probability at least
1− 2δ,

|l̂og det(A)− log det(A)| ≤ 2εΓ

where Γ = ∑n
i=1 log

(
7 · λ1(A)

λi(A)

)
and m ≥ d7κ(A) log(1

ε)e.

Relative Error Approximation

Let A ∈ Rn×n be an SPD matrix whose eigenvalues lie in the
interval (θ1, 1), for some 0 < θ1 < 1. Let C = In − A. Then,

log det(A) = −
∞∑
k=1

Tr
(
log (Ck)

)
k

.

Algorithm 2
Input: A ∈ Rn×n, accuracy parameter ε > 0, integer
m > 0.

1 C = In −A
2 Create p = d20 log(2/δ)/ε2e i.i.d random Gaussian
vectors, g1,g2, . . . ,gp.

3 Estimate ∑∞k=1
Tr(log (Ck))

k with a truncated Taylor Series
type randomized trace estimator that computes∑m
k=1

(
1
p

∑p
i=1 g>i Ckgi

)

Let l̂og det(A) be the log det approximation of the above
procedure on inputs A and ε. Then, we prove that with
probability at least 1− δ,

|l̂og det(A)− log det(A)| ≤ 2ε · | log det(A)|.
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Sparse PCA

Given a centered matrix X ∈ Rm×n (the mean of its columns
is zero), we seek for a vector wopt that solves the optimization
problem:

maximizew w>X>X w
subject to ‖w‖0 ≤ k, ‖w‖2 ≤ 1, w ∈ Rn.

This problem is NP-hard → relax to a problem with
convex constraints (but non-convex objective):

maximizew w>X>X w
subject to ‖w‖1 ≤

√
k, ‖w‖2 ≤ 1, w ∈ Rn.

Algorithm
Phase 1: Compute a stationary point w̃opt

1 Compute the gradient and make a gradient step.
2 Project onto the l1 ball with radius

√
k (‖w‖1).

3 Repeat until a threshold for the relative error is
exceeded.

Phase 2: Invoke a randomized rounding strategy.

1 Create a Bernoulli distribution and randomly round the
entries of w.

2 Repeat the experiment 10 times and keep the best
sparsification.

We prove the following:
Let wopt be the optimal solution of the Sparse PCA problem
(1) satisfying ‖wopt‖2 = 1 and ‖wopt‖0 ≤ k. Let ŵopt be the
vector returned when the rounding sparsification strategy is
applied on the optimal solution w̃opt of the optimization
problem (1), with s = 200k/ε2, where ε ∈ (0, 1] is an accuracy
parameter. Then, ŵopt has the following properties:
1 E‖ŵopt‖0 ≤ s.

2 With probability at least 3/4,
‖ŵopt‖2 ≤ 1 + 0.15ε.

3 With probability at least 3/4,
ŵ>optAŵopt ≥ w>optAwopt − ε.
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Experiments

Krylov Methods

Given a matrix A ∈ Rm×n and a starting guess matrix
X ∈ Rn×s, we want to use the block Krylov space
Kq(AA>,AX) to approximate the left singular vector
space of A.
We prove:
•Spectral & Frobenius bounds for the distance between the
approximate and the actual space.

•Quality measurements of the bounds relative to the best
low-rank approximation.

Theorem
Let φ(x) be a polynomial of degree 2q+ 1 with odd powers
only, such that φ(Σk) is nonsingular. If rank(V>k X) = k
then
‖ sin Θ(Kq,Uk)‖2,F ≤ ‖φ(Σk,⊥)‖2‖φ(Σk)−1‖2‖V>k,⊥X(V>k X)†‖2,F .

If, in addition, X has orthonormal or linearly indepen-
dent columns, then

‖V>k,⊥X(V>k X)†‖2,F = ‖ tan Θ(X,Vk)‖2,F

and
‖ sin Θ(Kq,Uk)‖2,F ≤ ‖φ(Σk,⊥)‖2‖φ(Σk)−1‖2‖ tan Θ(X,Vk)‖2,F .

where Θ(Kq,Uk) ∈ Rk×k is the diagonal matrix of principal
angles between Kq and range(Uk).

Theorem
Let φ(x) be a polynomial of degree 2q+ 1 with odd powers
only, such that φ(Σk) is nonsingular and φ(σi) ≥ σi, for
1 ≤ i ≤ k. If rank(V>k X) = k then for 1 ≤ i ≤ k,

‖A− ÛiÛ>i A‖F ≤ ‖A−Ai‖F + ∆
‖A− ÛiÛ>i A‖2 ≤ ‖A−Ai‖2 + ∆

σi −∆ ≤ ‖û>i A‖2 ≤ σi.

If, in addition, X has orthonormal columns, then:
∆ = ‖φ(Σk,⊥)‖2‖ tan Θ(X,Vk)‖F
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