A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix

Eugenia-Maria Kontopoulou & Petros Drineas

Computer Science, Purdue University

LogDet Problem

Given an SPD matrix $A \in \mathbb{R}^{n \times n}$, compute (exactly or approximately) log det (A).

Additive Error Approximation

Relative Error Approximation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix. For any α with $\lambda_1(\mathbf{A}) < \alpha$, define $\mathbf{B} = \mathbf{A}/\alpha$ and $\mathbf{C} = \mathbf{I}_n - B$. Then,

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix whose eigenvalues lie in the interval $(\theta_1, 1)$, for some $0 < \theta_1 < 1$. Let $\mathbf{C} = \mathbf{I}_n - A$. Then,

$$\log \det(A) = n \log(\alpha) - \sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left(\log\left(\mathbf{C}^{\kappa}\right)\right)}{k}.$$

- ($\sim l_{a})$

$$\log \det(A) = -\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left(\log\left(\mathbf{C}^{\kappa}\right)\right)}{k}.$$

Algorithm 1

Input: A ∈ ℝ^{n×n}, accuracy parameter ε > 0, integer m > 0.
Compute an estimate to the largest eigenvalue of A,λ₁(A), using the Power Method.

2 C = I_n - A/(7λ₁(A)).
3 Create p = [20 log(2/δ)/ε²] i.i.d random Gaussian vectors, g₁, g₂,..., g_p.
4 Estimate Σ_{k=1}[∞] Tr(log(C^k))/k with a truncated Taylor Series type randomized trace estimator that computes Σ_{k=1}^m (1/p Σ_{i=1}^p g_i^T C^k g_i).

Let $\widehat{\log \det}(\mathbf{A})$ be the $\log \det$ approximation of the above procedure. Then, we prove that with probability at least $1 - 2\delta$,

 $|\widehat{\log \det}(\mathbf{A}) - \log \det(A)| \le 2\epsilon\Gamma$ where $\Gamma = \sum_{i=1}^{n} \log \left(7 \cdot \frac{\lambda_1(\mathbf{A})}{\lambda_i(\mathbf{A})}\right)$ and $m \ge \lceil 7\kappa(\mathbf{A}) \log(\frac{1}{\epsilon}) \rceil$.

Algorithm 2

Input: A ∈ ℝ^{n×n}, accuracy parameter ε > 0, integer m > 0.
C = I_n - A
Create p = [20 log(2/δ)/ε²] i.i.d random Gaussian vectors, g₁, g₂,..., g_p.
Estimate Σ[∞]_{k=1} Tr(log(C^k))/k with a truncated Taylor Series type randomized trace estimator that computes Σ^m_{k=1} (¹/_pΣ^p_{i=1} g^T_iC^kg_i)

Let $\widehat{\log \det}(\mathbf{A})$ be the $\log \det$ approximation of the above procedure on inputs \mathbf{A} and ϵ . Then, we **prove** that with probability at least $1 - \delta$, $\widehat{|\log \det}(\mathbf{A}) - \log \det(A)| \le 2\epsilon \cdot |\log \det(\mathbf{A})|.$

Intensive Computational Kernel:

- Exact computation complexity $\mathcal{O}(n^3)$, prohibitive for

Big Data!!!

Approximation using Algorithm 1:

 $\mathcal{O}(nnz(A) \cdot (\mathbf{A}) \cdot (m\epsilon^{-2} + \log(n))).$

Real world applications: Multivariate Statistics (e.g. Computation of Maximum Likelihood), Spatial-Temporal (e.g. GIS, GPS e.t.c.), Data Mining (e.g. Classification of data) e.t.c.

More RandNLA Techniques

Krylov Subspace Methods: Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a starting guess matrix $\mathbf{X} \in \mathbb{R}^{n \times s}$, we want to use the block Krylov space

Table 1: Real-World data from University of Florida Sparse Matrix Collection and C++ Parallel Implementation. (Names: thermal2, ecology2, Idoor, thermomech_TC, boneS01)

	$\log \det(\mathbf{A})$			time (sec)		
n	exact	approx		ovact	approx	m
		mean	std	CACU	mean	
1228045	1.3869e6	1.3928e6	964.79	31.28	31.24	149
999999	3.3943e6	3.403e6	1212.8	18.5	10.47	125
952203	1.4429e7	1.4445e7	1683.5	117.91	17.60	33
102158	-546787	-546829.4	553.12	57.84	2.58	77
127224	1.1093e6	1.106e6	247.14	130.4	8.48	125

We **prove** that with probability at least 3/4 the sparse principal component is close to the actual principal component and its 2-norm is close to 1. We **demonstrate** applications on real world data, e.g. Genomics, Text Clustering.

 $\mathcal{K}_q(\mathbf{A}\mathbf{A}^{\top}, \mathbf{A}\mathbf{X})$ to approximate the left singular vector space of \mathbf{A} . We prove:

- Spectral & Frobenius bounds for the distance between the approximate and the actual space.
- Quality measurements of the bounds relative to the best low-rank approximation.

Sparse Principal Component Analysis: We relax the Sparse PCA problem to a **problem with convex constraints (but non-convex objective)**:

maximize $\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}$ subject to $\|\mathbf{w}\|_{1} \leq \sqrt{k}, \|\mathbf{w}\|_{2} \leq 1, \mathbf{w} \in \mathbb{R}^{n}$.

We **design** a two-phase algorithm that first approximates the relaxed problem and then uses a randomized rounding strategy to sparsify the approximation.

C. Boutsidis, P. Drineas, P. Kambadur, E. Kontopoulou, A. Zouzias (2016), A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix, under review at Journal of Linear Algebra and its Applications. ArXiv: https://arxiv.org/abs/1503.00374

- P. Drineas, I. Ipsen, E. Kontopoulou, M. Magdon-Ismail (2016), Structural Convergence Results for Low-Rank Approximations from Block Krylov Spaces, submitted to SIAM Journal on Matrix Analysis and Applications.ArXiv: https://arxiv.org/abs/1609.00671
- K. Fountoulakis, A. Kundu, E. Kontopoulou, P. Drineas (2016), A Randomized Rounding Algorithm for Sparse PCA, under review at ACM Transactions on Knowledge Discovery from Data. ArXiv: https://arxiv.org/abs/1508.03337