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LogDet Problem

Given an SPD matrix A ∈ Rn×n, compute (exactly or approximately) log det (A).

Additive Error Approximation

Let A ∈ Rn×n be an SPD matrix. For any α with λ1(A) < α, define
B = A/α and C = In −B. Then,

log det(A) = n log(α)−
∞∑
k=1

Tr
(
log (Ck)

)
k

.

Algorithm 1
Input: A ∈ Rn×n, accuracy parameter ε > 0, integer m > 0.

1 Compute an estimate to the largest eigenvalue of A, ˜λ1(A), using
the Power Method.

2 C = In −A/(7 ˜λ1(A)).
3 Create p = d20 log(2/δ)/ε2e i.i.d random Gaussian vectors,
g1,g2, . . . ,gp.

4 Estimate ∑∞k=1
Tr(log (Ck))

k with a truncated Taylor Series type
randomized trace estimator that computes ∑m

k=1

(
1
p

∑p
i=1 g>i Ckgi

)
.

Let l̂og det(A) be the log det approximation of the above procedure.
Then, we prove that with probability at least 1− 2δ,

|l̂og det(A)− log det(A)| ≤ 2εΓ
where Γ = ∑n

i=1 log
(
7 · λ1(A)

λi(A)

)
and m ≥ d7κ(A) log(1

ε)e.

Relative Error Approximation

Let A ∈ Rn×n be an SPD matrix whose eigenvalues lie in the interval
(θ1, 1), for some 0 < θ1 < 1. Let C = In − A. Then,

log det(A) = −
∞∑
k=1

Tr
(
log (Ck)

)
k

.

Algorithm 2
Input: A ∈ Rn×n, accuracy parameter ε > 0, integer m > 0.

1 C = In −A
2 Create p = d20 log(2/δ)/ε2e i.i.d random Gaussian vectors,
g1,g2, . . . ,gp.

3 Estimate ∑∞k=1
Tr(log (Ck))

k with a truncated Taylor Series type
randomized trace estimator that computes ∑m

k=1

(
1
p

∑p
i=1 g>i Ckgi

)

Let l̂og det(A) be the log det approximation of the above procedure on
inputs A and ε. Then, we prove that with probability at least 1− δ,

|l̂og det(A)− log det(A)| ≤ 2ε · | log det(A)|.

Efficiency and Applications

Intensive Computational Kernel:
•Exact computation complexity O(n3), prohibitive for

Big Data!!!
•Approximation using Algorithm 1:

O(nnz(A) · (A) · (mε−2 + log(n))).
Real world applications: Multivariate Statistics (e.g. Computation of
Maximum Likelihood), Spatial-Temporal (e.g. GIS, GPS e.t.c.), Data
Mining (e.g. Classification of data) e.t.c.

Experiments

Table 1: Real-World data from University of Florida Sparse Matrix Collection
and C++ Parallel Implementation. (Names: thermal2, ecology2, ldoor,
thermomech_TC, boneS01)

n

log det(A) time (sec)
mexact approx exact approx

mean std mean
1228045 1.3869e6 1.3928e6 964.79 31.28 31.24 149
999999 3.3943e6 3.403e6 1212.8 18.5 10.47 125
952203 1.4429e7 1.4445e7 1683.5 117.91 17.60 33
102158 -546787 -546829.4 553.12 57.84 2.58 77
127224 1.1093e6 1.106e6 247.14 130.4 8.48 125

More RandNLA Techniques

Krylov Subspace Methods: Given a matrix A ∈ Rm×n and a starting
guess matrix X ∈ Rn×s, we want to use the block Krylov space
Kq(AA>,AX) to approximate the left singular vector space of A.
We prove:
•Spectral & Frobenius bounds for the distance between the approximate
and the actual space.

•Quality measurements of the bounds relative to the best low-rank
approximation.
Sparse Principal Component Analysis: We relax the Sparse PCA
problem to a problem with convex constraints (but non-convex
objective):

maximizew w>X>X w
subject to ‖w‖1 ≤

√
k, ‖w‖2 ≤ 1, w ∈ Rn.

.

We design a two-phase algorithm that first approximates the relaxed
problem and then uses a randomized rounding strategy to sparsify the
approximation.

We prove that with probability at least 3/4 the sparse principal
component is close to the actual principal component and its 2-norm is
close to 1. We demonstrate applications on real world data, e.g.
Genomics, Text Clustering.
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