A Randomized Rounding Algorithm for Sparse PCA

Eugenia-Maria Kontopoulou
in collaboration with
K. Fountoulakis, A. Kundu \& P. Drineas

Department of Computer Science
Purdue University

PUNLAG Seminars
Purdue, April 2017

Principal Component Analysis (PCA)

Definition
Given a centered matrix $X \in \mathbb{R}^{m \times n}$ and the matrix $A=X^{\top} X$, we seek to find the vector $w_{\text {opt }}$ that solves:

$$
\begin{array}{ll}
\underset{w \in \mathbb{R}^{n}}{\operatorname{maximize}} & w^{\top} A w \\
\text { subject to } & \|w\|_{2}=1 \tag{1}
\end{array}
$$

Principal Component Analysis (PCA)

Definition

 Given a centered matrix $X \in \mathbb{R}^{m \times n}$ and the matrix $A=X^{\top} X$, we seek to find the vector $w_{\text {opt }}$ that solves:$$
\begin{array}{ll}
\underset{w \in \mathbb{R}^{n}}{\operatorname{maximize}} & w^{\top} A w \\
\text { subject to } & \|w\|_{2}=1 \tag{1}
\end{array}
$$

The objective function of Problem (1) is the Rayleigh Quotient, R, and for a Symmetric Positive Semidefinite matrix like A the maximum value of R is the dominant eigenvalue while $w_{\text {opt }}$ is the corresponding eigenvector.

Why not satisfied?

PCA Computation

- Singular Value Decomposition
- Eigenvalue Decomposition
- Krylov Methods (Lanczos etc)

Why not satisfied?

PCA Computation

- Singular Value Decomposition
- Eigenvalue Decomposition
- Krylov Methods (Lanczos etc)

> But what happens in the case of Big Data?

Memory Issues

- entire matrix in RAM
- sparsity is not preserved

Data Interpretation Issues

- difficult direct interpretation

Why not satisfied?

PCA Computation

- Singular Value Decomposition
- Eigenvalue Decomposition
- Krylov Methods (Lanczos etc)

> But what happens in the case of Big Data?

Memory Issues

- entire matrix in RAM
- sparsity is not preserved

Data Interpretation Issues

- difficult direct interpretation

Sparse PCA

Definition

Given a centered data matrix $X \in \mathbb{R}^{m \times n}$, the matrix $A=X^{\top} X$ and a parameter k, we seek to find the vector $w_{\text {opt }}$ that solves:

$$
\begin{array}{ll}
\underset{w \in \mathbb{R}^{n}}{\operatorname{maximize}} & w^{\top} A w \\
\text { subject to } & \|w\|_{0} \leq k, \\
& \|w\|_{2}=1 \tag{2}
\end{array}
$$

$\checkmark k$ enforces the sparsity of $w_{\text {opt }}$, (at most k non-zero entries).
\checkmark NP-hard if k grows with n.
\checkmark Non-convex constraints.
\checkmark Common approaches: thresholding the top singular vector, convex relaxations of the constraints, semi-definite programming, . . .

Definition
Given a centered data matrix $X \in \mathbb{R}^{m \times n}$, the matrix $A=X^{\top} X$ and a parameter k, we seek to find the vector $w_{\text {opt }}$ that solves:

$$
\begin{array}{ll}
\underset{w \in \mathbb{R}^{n}}{\operatorname{maximize}} & w^{\top} A w \\
\text { subject to } & \|w\|_{1} \leq \sqrt{k}, \\
& \|w\|_{2} \leq 1 \tag{3}
\end{array}
$$

\checkmark (convex) h_{1} relaxation of the sparsity constraint.
\checkmark convex relaxation of the 2-norm constraint.

Algorithm

Two-step algorithm:
(1) Compute a stationary point $\tilde{w}_{\text {opt }}$.
(2) Invoke a randomized rounding strategy to compute $\hat{w}_{\text {opt }}$.

How we find the stationary point:
(1) Compute the gradient and make a gradient step.
(2) Project onto the l_{1} ball with radius \sqrt{k}.
(3) Repeat until a relative error threshold is reached.

Randomized rounding strategy:
Given $\tilde{w}_{\text {opt }}$, define each element of $\hat{w}_{\text {opt }}$ as follows (opt subscript is dropped):

$$
\hat{w}_{i}=\left\{\begin{array}{lr}
\frac{1}{p_{i}} \tilde{w}_{i} \quad \text { with } p_{i}=\min \left\{\begin{array}{l}
\left\{\left|\tilde{w}_{i}\right|\right. \\
0,
\end{array} \quad \begin{array}{l}
\left.\| \tilde{w}_{1}, l\right\}
\end{array}\right. \\
0, & \text { otherwise }
\end{array}\right.
$$

Theorem I

In (1) we prove the following Theorem

Theorem

Let $w_{\text {opt }}$ be the optimal solution of the Sparse PCA problem (2) satisfying $\left\|w_{\text {opt }}\right\|_{2}=1$ and $\left\|w_{\text {opt }}\right\|_{0} \leq k$. Let $\hat{w}_{\text {opt }}$ be the vector returned when the rounding sparsification strategy is applied on the optimal solution $\tilde{w}_{\text {opt }}$ of the optimization problem (3), with $s=200 k / \epsilon^{2}$, where $\epsilon \in(0,1]$ is an accuracy parameter. Then, $\hat{w}_{o p t}$ has the following properties:
(1) $\mathbb{E}\left\|\hat{w}_{o p t}\right\|_{0} \leq s$.
(2) With probability at least $3 / 4$,

$$
\left\|\hat{w}_{\text {opt }}\right\|_{2} \leq 1+0.15 \epsilon
$$

(3) With probability at least 3/4,

$$
\hat{w}_{\mathrm{opt}}^{\top} A \hat{w}_{\mathrm{opt}} \geq \mathrm{w}_{\mathrm{opt}}^{\top} A w_{\mathrm{opt}}-\epsilon .
$$

Theorem II

Proofs

Experiments

Datasets

- Synthetic: $m=2^{7}, n=2^{12}$
- Classic-2: $m=2,858$ documents $, n=12,427$ terms
(1) CISI collection (1,460 information retrieval abstracts)
(2) CRANFIELD collection (1,398 aeronautical systems abstracts)

Evaluation

- $\|w\|_{0} / n$ vs $f(w)=w^{\top} A w /\|A\|_{2}$
- Pattern Captured
- Sparsity Captured
- Variance Captured

Experiments I

We test our algorithm (Naive \& SVD-based) with other SPCA software like MaxComp (Naive \& SVD-based) and Spasm.

Pattern capture

(a) Actual eigenvector

(c) Spasm

(b) $\mathrm{cvx}+\mathrm{Alg} \cdot 1$

(d) MaxComp

Sparsity ratio vs Eigenvalue capture

CVx refers to the solution of the optimization problem and Alg .1 to the randomized rounding technique.

Experiments II

Real Data Application

Table 1: Variance and sparsity captured by the principal components. PCA results in dense principal components, while Spasm and MaxComp share the same sparsity with rspca.

	k	pca	cvx	rspea	MaxComp	Spasm
Top Principal Comp.	100	0.4351	0.3077 (99\%)	0.2942 (99\%)	0.1955	0.2768
Top two Principal Comp.		0.6802	0.4897 (99\%)	0.4680 (99\%)	0.3391	0.4227
Top Principal Comp.	500	0.4351	0.3880 (95\%)	0.3728 (98\%)	0.3353	0.3601
Top two Principal Comp.		0.6802	0.6073 (95\%)	0.5864 (98\%)	0.5399	0.5701
Top Principal Comp.	1000	0.4351	0.4136 (90\%)	0.4005 (95\%)	0.3825	0.3912
Top two Principal Comp.		0.6802	0.6486 (90\%)	0.6294 (95\%)	0.6074	0.6163
Top Principal Comp.	1500	0.4351	0.4242 (84\%)	0.4120 (93\%)	0.4013	0.4039
Top two Principal Comp.		0.6802	0.6649 (82\%)	0.6470 (93\%)	0.6342	0.6361
Top Principal Comp.	2000	0.4351	0.4295 (75\%)	0.4190 (91\%)	0.4133	0.4131
Top two Principal Comp.		0.6802	0.6730 (70\%)	0.6572 (91\%)	0.6503	0.6491
Top Principal Comp.	4000	0.4351	0.4350 (6\%)	0.4278 (81\%)	0.4284	0.4271
Top two Principal Comp.		0.6802	0.6801 (3\%)	0.6700 (81\%)	0.6710	0.6690
Top Principal Comp.	8000	0.4351	0.4351 (0\%)	0.4324 (68\%)	0.4326	0.4316
Top two Principal Comp.		0.6802	0.6802 (0\%)	0.6764 (69\%)	0.6768	0.6752
Top Principal Comp.	10500	0.4351	0.4351 (0\%)	0.4332 (63\%)	0.4333	0.4324
Top two Principal Comp.		0.6802	0.6802 (0\%)	0.6776 (64\%)	0.6778	0.6764

More principal components can be obtained with a simple deflation method. However, it is much complicated to guarantee orthogonality. It boils down to a different harder problem.

Future Work

\checkmark Our experimental evaluation is mostly numerical; we don't have detailed evaluations on real data (e.g., on population genetics data).
\checkmark How about lower-order sparse singular vectors?
\checkmark Can we come up with a convex relaxation (e.g., an PSD relaxation) and use randomized rounding to give provable bounds for the sparsity vs. accuracy tradeoff for the top (or top few) singular vectors?
\checkmark How robust is sparse PCA to input noise?

Thank you!

Questions?

Kimon Fountoulakis, Abhisek Kundu, Eugenia-Maria Kontopoulou and Petros Drineas (2016), A Randomized Rounding Algorithm for Sparse PCA, accepted for publication in ACM TKDD, ArXiv link.

