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Principal Component Analysis (PCA)

Definition

Given a centered matrix X ∈ Rm×n
and the matrix A = X

>
X , we seek to find the

vector wopt that solves:

maximize
w∈Rn

w
>

A w

subject to ‖w‖2 = 1

(1)

The objective function of Problem (1) is the Rayleigh Quotient, R, and for a Symmetric

Positive Semidefinite matrix like A the maximum value of R is the dominant eigenvalue

while wopt is the corresponding eigenvector.
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Why not satisfied?

PCA Computation

• Singular Value Decomposition

• Eigenvalue Decomposition

• Krylov Methods (Lanczos etc)

But what happens in the case of Big Data?

Memory Issues

• entire matrix in RAM

• sparsity is not preserved

Data Interpretation Issues

• difficult direct interpretation

Solution: Add a sparsity constraint in Problem 1!!!
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Sparse PCA

D’Aspremont et al., SIAM Review (2007)

Definition

Given a centered data matrix X ∈ Rm×n
, the matrix A = X

>
X and a parameter k , we

seek to find the vector wopt that solves:

maximize
w∈Rn

w
>

A w

subject to ‖w‖0 ≤ k,

‖w‖2 = 1.

(2)

X k enforces the sparsity of wopt , (at most k non-zero entries).

X NP-hard if k grows with n.

X Non-convex constraints.

X Common approaches: thresholding the top singular vector, convex relaxations of

the constraints, semi-definite programming, . . .



Sparse PCA

Fountoulakis, Kontopoulou, Kundu, Drineas, ACM TKDD (2017)

Definition

Given a centered data matrix X ∈ Rm×n
, the matrix A = X

>
X and a parameter k , we

seek to find the vector wopt that solves:

maximize
w∈Rn

w
>

A w

subject to ‖w‖1 ≤
√

k,

‖w‖2 ≤ 1.

(3)

X (convex) l1 relaxation of the sparsity constraint.

X convex relaxation of the 2-norm constraint.



Algorithm

Two-step algorithm:

1 Compute a stationary point w̃opt .

2 Invoke a randomized rounding strategy to compute ŵopt .

How we find the stationary point:

1 Compute the gradient and make a gradient step.

2 Project onto the l1 ball with radius
√

k .

3 Repeat until a relative error threshold is reached.

Randomized rounding strategy:

Given w̃opt , define each element of ŵopt as follows (opt subscript is dropped):

ŵi =

{
1

pi
w̃i with pi = min

{
s|w̃i |
‖w̃‖1

, 1
}

0, otherwise



Theorem I

In [1] we prove the following Theorem

Theorem

Let wopt be the optimal solution of the Sparse PCA problem (2) satisfying ‖wopt‖2 = 1

and ‖wopt‖0 ≤ k. Let ŵopt be the vector returned when the rounding sparsification

strategy is applied on the optimal solution w̃opt of the optimization problem (3), with

s = 200k/ε2
, where ε ∈ (0, 1] is an accuracy parameter. Then, ŵopt has the following

properties:

1 E‖ŵopt‖0 ≤ s.

2 With probability at least 3/4,

‖ŵopt‖2 ≤ 1 + 0.15ε.

3 With probability at least 3/4,

ŵ
>
opt Aŵopt ≥ w

>
opt Awopt − ε.



Theorem II

Proofs



Experiments

The Datasets and Evaluation

Datasets

• Synthetic: m = 2
7
, n = 2

12

• Classic-2: m = 2, 858 documents , n = 12, 427 terms

1 CISI collection (1,460 information retrieval abstracts)

2 CRANFIELD collection (1,398 aeronautical systems abstracts)

Evaluation

• ‖w‖0/n vs f(w) = w
>

Aw/‖A‖2

• Pattern Captured

• Sparsity Captured

• Variance Captured



Experiments I

We test our algorithm (Naive & SVD-based) with other SPCA software like MaxComp
(Naive & SVD-based) and Spasm.

Pattern capture Sparsity ratio vs Eigenvalue capture

cvx refers to the solution of the optimization problem and Alg. 1 to the randomized

rounding technique.



Experiments II

Real Data Application

More principal components can be obtained with a simple deflation method.

However, it is much complicated to guarantee orthogonality. It boils down to a

different harder problem.



Future Work

X Our experimental evaluation is mostly numerical; we don’t have detailed

evaluations on real data (e.g., on population genetics data).

X How about lower-order sparse singular vectors?

X Can we come up with a convex relaxation (e.g., an PSD relaxation) and use

randomized rounding to give provable bounds for the sparsity vs. accuracy

tradeoff for the top (or top few) singular vectors?

X How robust is sparse PCA to input noise?



Thank you!

Questions?



Bibliography

Kimon Fountoulakis, Abhisek Kundu, Eugenia-Maria Kontopoulou and Petros

Drineas (2016), A Randomized Rounding Algorithm for Sparse PCA, accepted for

publication in ACM TKDD, ArXiv link.

http://arxiv.org/abs/1508.03337

