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The Krylov Space
for Singular Vector Subspace Approximations

Given an arbitrary matrix A ∈ Rm×n and a starting random guess X ∈ Rn×s ,

we build the Krylov space in AA> and AX:

Kq ≡ Kq(AA>,AX) = range(AX (AA>)AX . . . (AA>)qAX).

Assumptions

1 We assume exact arithmetic (there are no issues of numerical stability).

2 The dimension of the Krylov Space is maximal: dim(Kq) = (q + 1)s.

3 σk > σk+1 > 0, where k is the number of singular vectors we seek to

approximate and σk (σk+1) is the k-th (k + 1-st) singular value of A.
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Singular Gap
Why is it important?

Assume A ∈ Rm×n and a positive integer k < rank(A). Let Uk be the top-k

left singular vectors of A. The objective is to construct approximations

Ûk ∈ Rm×k for Uk .

Dominant Subspace Reconstruction

We are interested in the angles between range(Uk) and range(Ûk). This

metric is well defined only if Uk is unique.

Low Rank Approximation

We are interested in the approximation error between A and its projection into

the space spanned by Ûk :

‖A− Ûk Ûk

>
A‖2,F .

This metric is well-defined even if Uk is not unique.
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Prior Work & Motivation

[MM15] Gap-dependent bounds and gap-independent bounds

for subspace iteration and low-rank approximations from

block Krylov spaces.

X The gap-dependent bounds can be seen as a

special case of our results.

X In the case of gap-independent bounds, they can

only prove bounds for ‖A− Ûk Ûk

>
A‖2,F .

[HMT11] & [Woo14] Analysis of the subspace iteration. There are no bounds

for the angles between range(Uk) and range(Ûk).

[WZZ15] Similar in spirit to [MM15] but they also include

gap-dependent bounds for the angles between

range(Uk) and range(Ûk) with proof techniques similar

to ours.

Our primary focus is to understand the quality of the approximation to the

top-k left singular vectors of A from a block Krylov space.
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Basic Notation

Dominant and Subdominant Spaces

Let A = UΣV> be the full SVD of A with U ∈ Rm×m, Σ ∈ Rm×n and

V ∈ Rn×n, then for an integer 0 < k < rank(A) we can perform the following

partitioning:

A = UkΣkV>k︸ ︷︷ ︸
dominant spaces

+ Uk,⊥Σk,⊥V>k,⊥︸ ︷︷ ︸
sub-dominant spaces

Principal Angles Matrix

Assume Uk ∈ Rm×k and X ∈ Rm×s , with orthonormal columns:

Principal Angles:
θi = cos

−1(σi(U
>
k X))

Principal Angles Matrix:

Θ(Uk ,X) = diag(θ1, θ2, . . . , θk) ∈ Rk×k .
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Space Reconstruction Results
Distance bound of Kq from range(Uk)

Theorem 1

Let φ(x) be a polynomial of degree 2q + 1 with odd powers only such that

φ(Σk) is nonsingular. If rank(VT
kX) = k , then,

‖ sinΘ(Kq, Uk)‖2,F ≤ ‖φ(Σk,⊥)‖2 ‖φ(Σk)
−1‖2 ‖VT

k,⊥X(VT

kX)†‖2,F .

If, in addition, X has orthornomal or linearly independent columns, then,

‖VT

k,⊥X(VT

kX)†‖2,F = ‖ tanΘ(X,Vk)‖2,F

and

‖ sinΘ(Kq, Uk)‖2,F ≤ ‖φ(Σk,⊥)‖2 ‖φ(Σk)
−1‖2 ‖ tanΘ(X,Vk)‖2,F .
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Selecting the Starting Guess X

The starting guess X
The starting guess X can be any random matrix, e.g. random Gaussian,

random sign, sub-sampled randomized Hadamard transform.

RandNLA: bounds for ‖ tanΘ(X,Vk)‖2,F

Much work on RandNLA has been focused on bounding ‖ tanΘ(X,Vk)‖2,F

using matrix concentration inequalities (e.g. matrix Chernoff, matrix Bernstein,

matrix Hoeffding inequalities).

Full rank of V>
k X

It guarantees that range(Vk) and range(X) are sufficiently close and all

principal angles between them are less than π/2.

E. Kontopoulou (Purdue University) Results for Low-Rank Approximations from Block Krylov Spaces June 19, 2017 6 / 15



Exact Arithmetic Algorithm
to constuct approximations for Uk from Kq

Input: A ∈ Rm×n, starting guess X ∈ Rn×s

Target rank k < rank(A), and assume σk > σk+1

Block dimension q ≥ 1 with k ≤ (q + 1)s ≤ m

Output: Ûk ∈ Rm×k with orthonormal columns

1: Set Kq =
(
AX (AA>)AX · · · (AA>)qAX

)
∈ Rm×(q+1)s ,

and assume that rank(Kq) = (q + 1)s.
2: Run an exact arithmetic Rayleigh-Ritz procedure to find the approximation

UW ,k of the top k left singular vectors of W ∈ R(q+1)s×k i.e. the projection

of A into the orthonormal basis, UKq
, of range(Kq).

3: Return Ûk = UKq
UW ,k ∈ Rm×k .
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Low-rank Approximation Results
Quality of the approximation bounds

Theorem 2

Let φ(x) be a polynomial of degree 2q + 1 with odd powers only such that

φ(Σk) is nonsingular, and φ(σi) ≥ σi for 1 ≤ i ≤ k . If rank(VT
kX) = k ,

‖A− Ûk ÛT

kA‖2,F ≤ ‖A− UkU>k A‖2,F + ‖φ(Σk,⊥)‖2 ‖ tanΘ(X,Vk)‖F .
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Selecting the Polynomial φ(x)

Gap-amplifying polynomials

A gap-amplifying polynomial satisfies the following three properties:

X the small values remain small,

X the large values are amplified, and

X the large values are growing super-linearly.

We use rescaled Chebyshev-based gap-amplifying polynomials of the form:

φ(x) =
(1 + γ)α

ψq′(1 + γ)
ψq′(x/α),

where

γ =
σk − σk+1

σk+1

,

q′ = 2q + 1, x ∈ [0, α] and ψq′(x) is the Chebyshev polynomial of first kind.
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Obtaining a Relative Error
Choice of the degree q

Let ε > 0 be an accuracy parameter. If we select

q ≥ 1

2
√
γ

log2

4‖ tanΘ(X,Vk)‖2

ε
,

where γ = σk−σk+1

σk+1
, then the bounds of Theorem 2 become relative:

‖A− Ûk ÛT

kA‖2,F ≤ (1 + ε)σk+1.

Remember that:

σk+1 = ‖A− UkUk
T A‖2 ≤ ‖A− UkUk

T A‖F
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Proof Techniques

We combine:

X traditional Lanczos convergence analysis [Saa11], with

X optimal low-rank approximations via least squares problems [BDM11;

BDM14].

Theorem 1 We connect principal angles with least squares residuals.

Theorem 2 We use least squares residuals to interpret orthogonal

projections.
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Open Problems

� Is it possible to drop the assumption that V>k X is full-rank?

� Are our bounds tight enough to be informative?

� Can our bounds be useful in implementing block-Lanczos type methods?
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Thank you!

Questions?
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