Randomized Numerical Linear Algebra Approaches for Approximating Matrix Functions

Eugenia-Maria Kontopoulou

Department of Computer Science
Purdue University

Final Exam
Committee
Petros Drineas
David Gleich
Hemanta Maji
Kent Quanrud

Introduction

Matrix Functions

- Generalization of scalar function into multiple dimensions.

Matrix Functions

- Generalization of scalar function into multiple dimensions.
- Multiple definitions (Hig08).

Introduction

Jordan Canonical Form

$$
\mathbf{Z A Z}^{-1}=\mathbf{J}=\operatorname{diag}\left(\mathbf{J}_{1}, \mathbf{J}_{2}, \ldots, \mathbf{J}_{p}\right)
$$

Matrix Functions

- Generalization of scalar function into multiple dimensions.
- Multiple definitions (Hig08).
- We use the Jordan canonical form

$$
\mathbf{J}_{k}=\mathbf{J}_{k}\left(\lambda_{k}\right)=\left[\begin{array}{cccc}
\lambda_{k} & 1 & & \\
& \lambda_{k} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{k}
\end{array}\right]
$$ definition.

$\mathbf{A} \in \mathbb{C}^{n \times n}$: Input matrix.
$\mathbf{J} \in \mathbb{C}^{n \times n}$: Jordan matrix.
$\mathbf{Z} \in \mathbb{C}^{n \times n}$: non-singular matrix.
$\mathbf{J}_{k} \in \mathbb{C}^{m_{k} \times m_{k}}: k$-th Jordan block.
$\lambda_{k}: k$-th eigenvalue of \mathbf{A}.

Introduction

Matrix Functions

- Generalization of scalar function into multiple dimensions.
- Multiple definitions (Hig08).
- We use the Jordan canonical form definition.
- Consider positive semi-definite matrices (PSD).

PSD Jordan Canonical Form

$$
\mathbf{Z J Z}^{-1} \equiv \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{*} \equiv \mathbf{U} \mathbf{\Sigma} \mathbf{U}^{*}
$$

Any PSD matrix, $\mathbf{A} \in \mathbb{C}^{n \times n}$:
(1) has only real eigenvalues, $0 \leq \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$;
(2) has orthogonal eigenvectors, \mathbf{U};
(3) is always diagonalizable : $\mathbf{A}=\mathbf{U} \boldsymbol{\wedge} \mathbf{U}^{*}$.

Introduction

Matrix Functions

- Generalization of scalar function into multiple dimensions.
- Multiple definitions (Hig08).
- We use the Jordan canonical form definition.
- Consider positive semi-definite matrices (PSD).

PSD Jordan Canonical Form

$$
\mathbf{Z J Z}^{-1} \equiv \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{*} \equiv \mathbf{U} \mathbf{\Sigma} \mathbf{U}^{*}
$$

Any PSD matrix, $\mathbf{A} \in \mathbb{C}^{n \times n}$:
(1) has only real eigenvalues, $0 \leq \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$;
(2) has orthogonal eigenvectors, \mathbf{U};
(3) is always diagonalizable :
$\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{*}$.

The Big Data Problem in Numerical Linear Algebra

```
Modern Datasets{\begin{array}{l}{\mathrm{ Large & Complex }}\\{\mathrm{ High Dimensional & Noisy}}\end{array}=\mp@code{l}
```

The Big Data Problem in Numerical Linear Algebra

The Big Data Problem in Numerical Linear Algebra

SVD/EIG require $\mathcal{O}\left(n^{3}\right)$ flops!

The Big Data Problem in Numerical Linear Algebra

SVD represents observations as linear combination of features!

The Big Data Problem in Numerical Linear Algebra

Roadmap

Log-Based Matrix Functions

Functions of Form

$$
f(\log (g(\mathbf{A})))=\gamma
$$

where $f(\cdot)$ is a matrix or scalar function, $g(\cdot)$ is a matrix function, $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a PSD and $\gamma \in \mathbb{R}$.

Functions of Form

$f(\log (g(\mathbf{A})))=\gamma$

where $f(\cdot)$ is a matrix or scalar function, $g(\cdot)$ is a matrix function, $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a PSD and $\gamma \in \mathbb{R}$.

Von Neumann Entropy

$$
\mathcal{H}[\mathbf{A}]=-\operatorname{Tr}[\mathbf{A} \log [\mathbf{A}]]
$$

$$
\begin{aligned}
& f(\mathbf{X})=-\operatorname{Tr}[\mathbf{X} \cdot \exp [\mathbf{X}]]: \mathbb{C}^{n \times n} \rightarrow \mathbb{R} \\
& g(\mathbf{X})=\mathbf{X}: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}
\end{aligned}
$$

Log-Based Matrix Functions

Functions of Form

$$
f(\log (g(\mathbf{A})))=\gamma
$$

where $f(\cdot)$ is a matrix or scalar function, $g(\cdot)$ is a matrix function, $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a PSD and $\gamma \in \mathbb{R}$.

Von Neumann Entropy

$$
\mathcal{H}[\mathbf{A}]=-\operatorname{Tr}[\mathbf{A} \log [\mathbf{A}]]
$$

$$
\begin{aligned}
& f(\mathbf{X})=-\operatorname{Tr}[\mathbf{X} \cdot \exp [\mathbf{X}]]: \mathbb{C}^{n \times n} \rightarrow \mathbb{R} \\
& g(\mathbf{X})=\mathbf{X}: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}
\end{aligned}
$$

Logarithm of Determinant

$$
\log \operatorname{det}[\mathbf{A}]=\log (\operatorname{det}[\mathbf{A}])
$$

$$
\begin{aligned}
& f(x)=x: \mathbb{R} \rightarrow \mathbb{R} \\
& g(\mathbf{X})=\operatorname{det}[\mathbf{X}]: \mathbb{C}^{\mathrm{n} \times \mathrm{n}} \rightarrow \mathbb{R}
\end{aligned}
$$

Roadmap

Von-Neumann Entropy Problem

Definition
Given a quantum system, compute (exactly or approximately) its Von-Neumann Entropy.

Application: Information theory, quantum mechanics, . . .

What is the Von-Neumann Entropy?
\checkmark Extension of Gibbs/Shannon entropy concept in quantum mechanics.
\checkmark Described in 1932 by Von-Neumann in his book "Mathematische Grundlagen der Quantenmechanik".
\checkmark Fundamental notion: Density Matrix.

Von-Neumann Entropy of Real Density Matrices I

Definition

A Density Matrix is represented by the statistical mixture of pure states and has the form

$$
\mathbf{R}=\sum_{i=1}^{n} p_{i} \boldsymbol{y}_{i} \mathbf{y}_{i}^{\top}=\mathbf{Y} \mathbf{\Lambda}_{p} \mathbf{Y}^{\top} \in \mathbb{R}^{n \times n},
$$

where the vectors $\mathbf{y}_{i} \in \mathbb{R}^{n}$ represent the pure states of a system and are pairwise orthogonal and normal, while p_{i} 's correspond to the probability of each state and satisfy $p_{i}>0$ and $\sum_{i=1}^{n} p_{i}=1$.

Von-Neumann Entropy of Real Density Matrices II

Straightforward Computation

(1) Compute the eigenvalues of $\mathbf{R}, p_{1}, p_{2}, \ldots, p_{n}$ (e.g. using eigendecomposition).
(2) Compute the Von-Neumann Entropy of \mathbf{R} using $p_{i}, i=1, \ldots, n$:

$$
\mathcal{H}[\mathbf{R}]=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

Time Complexity: $\mathcal{O}\left(n^{3}\right)$.

Mathematical Manipulation of $\mathcal{H}[\mathbf{R}]$

Consider the function $h(x)=x \log (x) \in \mathbb{R}$.

$$
\begin{aligned}
h[\mathbf{R}] & =\mathbf{R} \log [\mathbf{R}] \\
& =\mathbf{Y} \Sigma_{p} \mathbf{Y}^{\top} \log \left[\mathbf{Y} \Sigma_{p} \mathbf{Y}^{\top}\right] \\
& =\mathbf{Y} \Sigma_{p} \log \left[\Sigma_{p}\right] \mathbf{Y}^{\top} \\
& =\mathbf{Y} h\left[\Sigma_{p}\right] \mathbf{Y}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{H}[\mathbf{R}] & =-\sum_{i=1}^{n} p_{i} \log p_{i} \\
& =-\operatorname{Tr}\left[h\left[\Sigma_{p}\right]\right] \\
& =-\operatorname{Tr}\left[\mathbf{Y}^{\top} \mathbf{Y} h\left[\Sigma_{p}\right]\right] \\
& =-\operatorname{Tr}\left[\mathbf{Y} h\left[\Sigma_{p}\right] \mathbf{Y}^{\top}\right] \\
& =-\operatorname{Tr}[h[\mathbf{R}]]
\end{aligned}
$$

Two Approaches
(1) Using a Taylor expansion for the logarithm we can further manipulate $\mathcal{H}[\mathbf{R}]$.
(2) Approximate $h[\mathbf{R}]$ with Chebyshev Polynomials.

Two Randomized Numerical Linear Algebra tools
(1) Power method with provable bounds (Bou+17; Tre11).
(2) Randomized trace estimators (AT11).

Mathematical Manipulation of $\mathcal{H}[\mathbf{R}]$

Lemma
Let $\mathbf{R} \in \mathbb{R}^{n \times n}$ be a density matrix whose probabilities lie in the interval $[\ell, u]$, for some $0<\ell \leq u \leq 1$. Then,

$$
\mathcal{H}[\mathbf{R}]=\log \left(u^{-1}\right)+\underbrace{\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left[\mathbf{R}\left(\mathbf{I}-u^{-1} \mathbf{R}\right)^{k}\right]}{k}}_{\Delta}
$$

We estimate the trace of $\mathbf{R}\left(\mathbf{I}-u^{-1} \mathbf{R}\right)^{k}$ using Gaussian trace estimator and Δ by truncation. The largest eigenvalue, u, is estimated using the power method with provable bounds.

Relative Error Approximation

The Taylor-based Algorithm

Input: $R \in \mathbb{R}^{n \times n}$, accuracy parameter $\varepsilon>0$, integer $m>0$.
Output: $\widehat{\mathcal{H}}[\mathbf{R}]$, the approximation to the $\mathcal{H}[R]$.

1: Compute $\hat{p_{1}}$, the estimation of the largest singular value of R, using power method.
2: Set $u=\min \left\{1,6 \hat{p_{1}}\right\}$
3: $C=I_{n}-u^{-1} R$
4: Generate $s=\left\lceil 20 \log (2 / \delta) / \varepsilon^{2}\right\rceil$ i.i.d random Gaussian vectors, $g_{1}, g_{2}, \ldots, g_{s}$.
5: Compute $\widehat{\mathcal{H}}[\mathbf{R}]$ as:

$$
\widehat{\mathcal{H}}[\mathbf{R}]=\log u^{-1}+\frac{1}{s} \sum_{i=1}^{s} \sum_{k=1}^{m} \frac{g_{i}^{\top} R C^{k} g_{i}}{k}
$$

Relative Error Approximation

Bounding the Error \& Running Time for the Taylor-based Algorithm

Theorem

Let \mathbf{R} be a density matrix such that all probabilities $p_{i}, i=1 \ldots n$ satisfy $0<\ell \leq p_{i}$. Let u be computed using the power method and let $\widehat{\mathcal{H}(\mathbf{R})}$ be the output of the Taylor-based Algorithm on inputs \mathbf{R}, m, and $\epsilon<1$; Then, with probability at least $1-2 \delta$,

$$
|\widehat{\mathcal{H}(\mathbf{R})}-\mathcal{H}[\mathbf{R}]| \leq 2 \epsilon \mathcal{H}[\mathbf{R}]
$$

by setting $m=\left\lceil\frac{u}{\ell} \log (1 / \epsilon)\right\rceil$.
Running Time

$$
\mathcal{O}\left(\frac{u}{\ell} \cdot \frac{\log (1 / \varepsilon) \log (1 / \delta)}{\varepsilon^{2}} \cdot \mathrm{nnz}(\mathbf{R})+\log (\mathrm{n}) \cdot \log (1 / \delta) \cdot \mathrm{nnz}(\mathbf{R})\right)
$$

Mathematical Manipulation of $\mathcal{H}[\mathbf{R}]$

Using Chebyshev Polynomials

Lemma
We can approximate $h(x)=x \log (x)$ in the interval $(0, u]$ by

$$
f_{m}(x)=\sum_{w=0}^{m} \alpha_{w} \mathcal{T}_{w}(x)
$$

where $\mathcal{T}_{w}(x)=\cos (w \cdot \arccos ((2 / u) x-1))$, the Chebyshev polynomials of the first kind for $w>0$ and,

$$
\alpha_{0}=\frac{u}{2}\left(\log \frac{u}{4}+1\right), \quad \alpha_{1}=\frac{u}{4}\left(2 \log \frac{u}{4}+3\right), \quad \text { and } \quad \alpha_{w}=\frac{(-1)^{w} u}{w^{3}-w} \text { for } w \geq 2
$$

For any $m \geq 1$,

$$
\left|h(x)-f_{m}(x)\right| \leq \frac{u}{2 m(m+1)} \leq \frac{u}{2 m^{2}}
$$

for $x \in[0, u]$.

Using the Lemma we approximate $\mathcal{H}(\mathbf{R})$ by $\widehat{\mathcal{H}(\mathbf{R})}$ as follows:

$$
\begin{aligned}
\mathcal{H}(\mathbf{R}) & =-\operatorname{Tr}[h[\mathbf{R}]] \\
& \approx-\operatorname{Tr}\left[f_{m}[\mathbf{R}]\right] \\
& \approx-\frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top} f_{m}[\mathbf{R}] \mathbf{g}_{i} \\
& =\widehat{\mathcal{H}(\mathbf{R})}
\end{aligned}
$$

We estimate u using the power method and $\operatorname{Tr}\left[f_{m}[\mathbf{R}]\right]$ using a Gaussian trace estimator. We compute the scalars $\mathbf{g}_{i}^{\top} f_{m}[\mathbf{R}] \mathbf{g}_{i}$ using the Clenshaw algorithm.

Relative Error Approximation

The Chebyshev-based Algorithm

Input: $R \in \mathbb{R}^{n \times n}$, accuracy parameter $\varepsilon>0$, integer $m>0$. Output: $\widehat{\mathcal{H}}[\mathbf{R}]$, the approximation to the $\mathcal{H}[R]$.

1: Compute $\hat{p_{1}}$, the estimation of the largest singular value of R, using power method.
2: Set $u=\min \left\{1,6 \hat{p_{1}}\right\}$
3: Generate $s=\left\lceil 20 \log (2 / \delta) / \varepsilon^{2}\right\rceil$ i.i.d random Gaussian vectors, $g_{1}, g_{2}, \ldots, g_{s}$.
4: Compute $\widehat{\mathcal{H}}[\mathbf{R}]$ as:

$$
\widehat{\mathcal{H}}[\mathbf{R}]=-\frac{1}{s} \sum_{i=1}^{s} g_{i}^{\top} f_{m}(R) g_{i}
$$

Relative Error Approximation

Bounding the Error \& Running Time for the Chebyshev-based Algorithm

Theorem

Let \mathbf{R} be a density matrix such that all probabilities $p_{i}, i=1 \ldots n$ satisfy $0<\ell \leq p_{i}$. Let u be computed using the power method and let $\widehat{\mathcal{H}(\mathbf{R})}$ be the output of the Chebyshev-based Algorithm on inputs \mathbf{R}, m, and $\epsilon<1$; Then, with probability at least $1-2 \delta$,

$$
|\widehat{\mathcal{H}(\mathbf{R})}-\mathcal{H}[\mathbf{R}]| \leq 3 \epsilon \mathcal{H}[\mathbf{R}]
$$

by setting $m=\sqrt{\frac{u}{2 \epsilon \ell \ln (1 /(1-\ell))}}$
Running Time

$$
\mathcal{O}\left(\sqrt{\frac{u}{\ell}} \cdot \sqrt{\frac{1}{\log (1 /(1-\ell))}} \cdot \frac{\log (1 / \delta)}{\varepsilon^{2.5}} \cdot \mathrm{nnz}(\mathbf{R})+\log (\mathrm{n}) \cdot \log (1 / \delta) \cdot \mathrm{nnz}(\mathbf{R})\right)
$$

The Hermitian Case

Theorem

Every Hermitian matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ can be expressed as

$$
\begin{equation*}
\mathbf{A}=\mathbf{B}+i \mathbf{C} \tag{1}
\end{equation*}
$$

where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is symmetric and $\mathbf{C} \in \mathbb{R}^{n \times n}$ is anti-symmetric (or skew-symmetric). If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is positive semi-definite, then \mathbf{B} is also positive semi-definite.

Theorem
The trace of a Hermitian matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ expressed as in eqn. (1) is equal to the trace of its real part:

$$
\operatorname{Tr}[\mathbf{A}]=\operatorname{Tr}[\mathbf{B}]
$$

Algorithmic design

- The trace estimator works for Hermitian PSD matrices.
- Taylor and Chebyshev polynomials work in complex space.
- No guarantees are known for power method \rightarrow set $u=1$.

Low Rank Density Matrices

Assume that the density matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$, has at most k non-zero probabilities, p_{i}. This means that at most k of its states are pure.

Issue \& Solution
$x n-k$ probabilities are zero \rightarrow Chebyshev/Taylor approaches are not working.
\checkmark Project to a smaller full-dimension space \rightarrow Random Projections.
\checkmark Fast construction of the random projector.

Construction of the Random Projector

- Gaussian Random Projector
- Sub-sampled Randomized Hadamard Transform
- Input Sparsity Transform
- Hartley Transform

Additive-Relative Approximation

Input: $R \in \mathbb{R}^{n \times n}$, integer $k \ll n$.
Output: $\widehat{\mathcal{H}(R)}$, the approximation to the $\mathcal{H}[R]$.

1: Construct the random projection matrix $\Pi \in \mathbb{R}^{n \times s}$.
2: Compute $\tilde{R}=R \Pi \in \mathbb{R}^{n \times s}$.
3: Compute and return the (at most) k non-zero singular values of $\tilde{R}, \tilde{p}_{i}, i=1 \ldots k$.
4: Compute $\widehat{\mathcal{H}(R)}$ as:

$$
\widehat{\mathcal{H}(R)}=\sum_{i=1}^{k} \tilde{p}_{i} \log \frac{1}{\tilde{p}_{i}}
$$

Additive-Relative Approximation

Bounding the Error \& Running Time for the Random Projection based Algorithm

Theorem

Let \mathbf{R} be a density matrix with at most $k \ll n$ non-zero probabilities and let $\varepsilon<1 / 2$ be an accuracy parameter. Then, with probability at least 0.9, the output of the Random Projection based Algorithm satisfies

$$
\left|p_{i}^{2}-\tilde{p}_{i}^{2}\right| \leq \varepsilon \cdot p_{i}^{2}
$$

for all $i=1 \ldots k$. Additionally,

$$
|\mathcal{H}(\mathbf{R})-\widehat{\mathcal{H}(\mathbf{R})}| \leq \sqrt{\varepsilon} \mathcal{H}(\mathbf{R})+\sqrt{\frac{3}{2}} \varepsilon
$$

Running Time

Algorithm 4 (combined with the Input Sparsity Transform) runs in time

$$
\mathcal{O}\left(\mathrm{nnz}(\mathbf{R})+\mathrm{nk}^{4} / \varepsilon^{4}\right)
$$

Experiments

Matrix of size $30,000 \times 30,000, m=[5: 5: 20]$ and $u \approx \lambda_{\max }$.

$$
s=\{50,100,200\}
$$

Notes

- Exact computation: 5.6 hours.
- Approximation of $\lambda_{\max }$: 3.6 minutes.

Experiments

Random Projections based Algorithms
Matrix of size $4,096 \times 4,096$ and $k=\{10,50,100,300\}$.

$$
s=\{400,600,800,1000\}
$$

$$
s=[300: 50: 450]
$$

Exact computation for various k.

\mathbf{k}	$\mathbf{1 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{3 0 0}$
Time	1.5 sec	8 sec	15 sec	1 min

Publications

(Kon+18) E. Kontopoulou, A. Grama, W. Szpankowski, P. Drineas, "Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices'", in Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2486-2490
(Kon+20) E. Kontopoulou, G. Dexter, A. Grama, W. Szpankowski \& P. Drineas, "Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices'", in IEEE Transactions on Information Theory, to appear

Roadmap

The problem of logdet [A]

Definition
Given a Symmetric Positive Definite (SPD) matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, compute (exactly or approximately) $\log \operatorname{det}[\mathbf{A}]$.

Application: Maximum likelihood estimations, Gaussian processes prediction, logdet-divergence metric, barrier functions in interior point methods . . .

Straightforward Computation

(1) Compute the Cholesky Factorization of \mathbf{A}, and let \mathbf{L} be the Cholesky factor.
(2) Compute the log-determinant of \mathbf{A} using \mathbf{L} :

$$
\log \operatorname{det}[\mathbf{A}]=\log \operatorname{det}[\mathbf{L}]^{2}=2 \log \prod_{i=1}^{n} l_{i i}=2 \sum_{i=1}^{n} \log \left(l_{i}\right)=2 \operatorname{Tr}[\log [\mathbf{L}]]
$$

Time Complexity: $\mathcal{O}\left(n^{3}\right)$

Formulas

Additive Error Approximation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix whose dominant eigenvalue is bounded by α. Then,

$$
\operatorname{logdet}[\mathbf{A}] \approx n \log (u)-\sum_{k=1}^{m} \frac{1}{k}\left(\frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top}\left(\mathbf{I}_{n}-\alpha^{-1} \mathbf{A}\right)^{k} \mathbf{g}_{i}\right)
$$

Additive Error Approximation

Bounding the Error \& Running Time

Lemma
Let logdet [\mathbf{A}] be the approximation of logdet [A] using the LogDetAdditive Algorithm on inputs \mathbf{A}, m and ε. Then, we prove that with probability at least $1-2 \delta$,

$$
|\widehat{\text { logdet }}[\mathbf{A}]-\operatorname{logdet}[\mathbf{A}]| \leq 2 \varepsilon \sum_{i=1}^{n} \log (7 \cdot \kappa(\mathbf{A}))
$$

setting $m \geq\left\lceil 7 \kappa(\mathbf{A}) \log \left(\frac{1}{\varepsilon}\right)\right\rceil$
Running Time

$$
\mathcal{O}\left(7 \cdot \kappa(\mathbf{A}) \cdot \frac{1}{\varepsilon^{2}} \cdot \log \left(\frac{1}{\varepsilon}\right) \cdot \log \left(\frac{1}{\delta}\right) \cdot \mathrm{nnz}(\mathbf{A})+\log \mathrm{n} \cdot \log \left(\frac{1}{\delta}\right) \cdot \mathrm{nnz}(\mathbf{A})\right)
$$

Formulas

Additive Error Approximation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix whose dominant eigenvalue is bounded by α. Then,

$$
\operatorname{logdet}[\mathbf{A}] \approx n \log (u)-\sum_{k=1}^{m} \frac{1}{k}\left(\frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top}\left(\mathbf{I}_{n}-\alpha^{-1} \mathbf{A}\right)^{k} \mathbf{g}_{i}\right)
$$

Relative Error Approximation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix whose eigenvalues lie in the interval $\left(\theta_{1}, 1\right)$, for some $0<\theta_{1}<1$. Then,

$$
\operatorname{logdet}[\mathbf{A}] \approx-\sum_{k=1}^{m} \frac{1}{k}\left(\frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top}\left(\mathbf{I}_{n}-\mathbf{A}\right)^{k} \mathbf{g}_{i}\right)
$$

Relative Error Approximation

Bounding the Error \& Running Time

Lemma

Let logdet [A] be the approximation of logdet [A] using the LogDetRelative Algorithm on inputs \mathbf{A}, m and ε. Then, we prove that with probability at least $1-\delta$,

$$
|\widehat{\log d e t}[\mathbf{A}]-\operatorname{logdet}[\mathbf{A}]| \leq 2 \varepsilon \cdot|\operatorname{logdet}[\mathbf{A}]|
$$

and $m \geq\left\lceil\frac{1}{\theta_{1}} \cdot \log \left(\frac{1}{\varepsilon}\right)\right\rceil$
Running Time

$$
\mathcal{O}\left(\frac{1}{\theta_{1}} \cdot \frac{1}{\varepsilon^{2}} \cdot \log \left(\frac{1}{\varepsilon}\right) \cdot \log \left(\frac{1}{\delta}\right) \cdot n n z(\mathbf{A})\right)
$$

Publications

(Bou+17) C. Boutsidis, P. Drineas, P. Kambadur, E. Kontopoulou, A. Zouzias, "A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix", in Linear Algebra and its Applications, 533, pp.95-117.

Roadmap

Low Rank Matrix Approximations

Low Rank Approximation
Given an $m \times n$ matrix \mathbf{A} and a rank parameter $k \ll \min \{m, n\}$, the Low-Rank Approximation problem is to find a matrix \mathbf{Z} of rank k such that $\|\mathbf{A}-\mathbf{Z}\|_{2, F}$ is sufficient small.

Eckart-Young Theorem

The minimization problem:

$$
\min _{\operatorname{rank}(\mathbf{z})=\mathbf{k}}\|\mathbf{A}-\mathbf{Z}\|_{2, F}
$$

has a solution given by the truncated SVD:

$$
\mathbf{Z}=\mathbf{A}_{k}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{\top}
$$

We are interested in measuring the quality of the approximation to top singular vectors and the extraction of meaningful sparse principal components.

Roadmap

The Krylov Space

Given an arbitrary matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a starting random guess $\mathbf{X} \in \mathbb{R}^{n \times s}$, we build the Krylov space in $\mathbf{A A}{ }^{\top}$ and $\mathbf{A X}$:

$$
\mathcal{K}_{q} \equiv \mathcal{K}_{q}\left(\mathbf{A A}^{\top}, \mathbf{A X}\right)=\operatorname{range}\left(\begin{array}{llll}
\mathbf{A X} & \left(\mathbf{A A}^{\top}\right) \mathbf{A X} & \ldots & \left(\mathbf{A A}^{\top}\right)^{\mathrm{q}} \mathbf{A} \mathbf{X}
\end{array}\right)
$$

Assumptions
(1) We assume exact arithmetic (there are no issues of numerical stability).
(2) The dimension of the Krylov Space is maximal: $\operatorname{dim}\left(\mathcal{K}_{q}\right)=(q+1) s$.
(3) $\sigma_{k}>\sigma_{k+1}>0$, where k is the number of singular vectors we seek to approximate and $\sigma_{k}\left(\sigma_{k+1}\right)$ is the k-th ($k+1$-st) singular value of \mathbf{A}.

Singular Gap

Why is it important?

Assume $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a positive integer $k<\operatorname{rank}(\mathbf{A})$. Let \mathbf{U}_{k} be the top- k left singular vectors of \mathbf{A}. The objective is to construct approximations $\widehat{\mathbf{U}}_{k} \in \mathbb{R}^{m \times k}$ for \mathbf{U}_{k}.

Dominant Subspace Reconstruction
We are interested in the angles between range $\left(\mathbf{U}_{\mathrm{k}}\right)$ and range $\left(\widehat{\mathbf{U}_{\mathrm{k}}}\right)$. This metric is well defined only if \mathbf{U}_{k} is unique.

Low Rank Approximation
We are interested in the approximation error between \mathbf{A} and its projection into range ($\widehat{\mathrm{U}_{\mathrm{k}}}$):

$$
\left\|\mathbf{A}-\widehat{\mathbf{U}}_{k} \widehat{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{2, F}
$$

This metric is well-defined even if \mathbf{U}_{k} is not unique.

Dominant and Subdominant Spaces
Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ be the full SVD of \mathbf{A} with $\mathbf{U} \in \mathbb{R}^{m \times m}, \boldsymbol{\Sigma} \in \mathbb{R}^{m \times n}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$, then for an integer $0<k<\operatorname{rank}(\mathbf{A})$ we can perform the following partitioning:

$$
\mathbf{A}=\underbrace{\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{\top}}_{\text {dominant spaces }}+\underbrace{\mathbf{U}_{k, \perp} \boldsymbol{\Sigma}_{k, \perp} \mathbf{V}_{k, \perp}^{\top}}_{\text {sub-dominant spaces }}
$$

Principal Angles Matrix
Assume $\mathbf{U}_{k} \in \mathbb{R}^{m \times k}$ and $\mathbf{X} \in \mathbb{R}^{m \times s}$, with orthonormal columns:
Principal Angles:

$$
\theta_{i}=\cos ^{-1}\left(\sigma_{i}\left(\mathbf{U}_{k}^{\top} \mathbf{x}\right)\right)
$$

Principal Angles Matrix:

$$
\boldsymbol{\Theta}\left(\mathbf{U}_{k}, \mathbf{x}\right)=\operatorname{diag}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right) \in \mathbb{R}^{k \times k}
$$

Space Reconstruction Results

Distance bound of \mathcal{K}_{q} from range $\left(\mathrm{U}_{\mathrm{k}}\right)$

Theorem 1

Let $\phi(x)$ be a polynomial of degree $2 q+1$ with odd powers only such that $\phi\left(\boldsymbol{\Sigma}_{k}\right)$ is nonsingular. If $\operatorname{rank}\left(\mathbf{V}_{\mathrm{k}}^{\mathrm{T}} \mathbf{X}\right)=\mathrm{k}$, then,

$$
\left\|\sin \boldsymbol{\Theta}\left(\mathcal{K}_{q}, \mathbf{U}_{k}\right)\right\|_{2, F} \leq\left\|\phi\left(\boldsymbol{\Sigma}_{k, \perp}\right)\right\|_{2}\left\|\phi\left(\boldsymbol{\Sigma}_{k}\right)^{-1}\right\|_{2}\left\|\mathbf{V}_{k, \perp}^{\top} \mathbf{X}\left(\mathbf{V}_{k}^{\top} \mathbf{X}\right)^{\dagger}\right\|_{2, F}
$$

If, in addition, \mathbf{X} has orthornomal or linearly independent columns, then,

$$
\left\|\mathbf{V}_{k, \perp}^{T} \mathbf{X}\left(\mathbf{V}_{k}^{T} \mathbf{X}\right)^{\dagger}\right\|_{2, F}=\left\|\tan \boldsymbol{\Theta}\left(\mathbf{X}, \mathbf{V}_{k}\right)\right\|_{2, F}
$$

and

$$
\left\|\sin \boldsymbol{\Theta}\left(\mathcal{K}_{q}, \mathbf{U}_{k}\right)\right\|_{2, F} \leq\left\|\phi\left(\boldsymbol{\Sigma}_{k, \perp}\right)\right\|_{2}\left\|\phi\left(\boldsymbol{\Sigma}_{k}\right)^{-1}\right\|_{2}\left\|\tan \boldsymbol{\Theta}\left(\mathbf{X}, \mathbf{V}_{k}\right)\right\|_{2, F}
$$

Selecting the Starting Guess X

The starting guess \mathbf{X}

The starting guess \mathbf{X} can be any random matrix, e.g. random Gaussian, random sign, sub-sampled randomized Hadamard transform.

RandNLA: bounds for $\left\|\tan \boldsymbol{\Theta}\left(\mathbf{X}, \mathbf{V}_{k}\right)\right\|_{2, F}$
Much work on RandNLA has been focused on bounding $\left\|\tan \boldsymbol{\Theta}\left(\mathbf{X}, \mathbf{V}_{k}\right)\right\|_{2, F}$ using matrix concentration inequalities (e.g. matrix Chernoff, matrix Bernstein, matrix Hoeffding inequalities).

Full rank of $\mathbf{V}_{k}^{\top} \mathbf{X}$
It guarantees that range $\left(\mathbf{V}_{\mathrm{k}}\right)$ and range (\mathbf{X}) are sufficiently close and all principal angles between them are less than $\pi / 2$.

Exact Arithmetic Algorithm

to construct approximations for U_{k} from \mathcal{K}_{q}

Input: $A \in \mathbb{R}^{m \times n}$, starting guess $X \in \mathbb{R}^{n \times s}$
Target rank $k<\operatorname{rank}(\mathrm{A})$, and assume $\sigma_{k}>\sigma_{k+1}$
Block dimension $q \geq 1$ with $k \leq(q+1) s \leq m$
Output: $\hat{U}_{k} \in \mathbb{R}^{m \times k}$ with orthonormal columns

1: Set $K_{q}=\left(A X \quad\left(A A^{\top}\right) A X \quad \cdots \quad\left(A A^{\top}\right)^{a} A X\right) \in \mathbb{R}^{m \times(a+1) s}$, and assume that rank $\left(\mathrm{K}_{\mathrm{q}}\right)=(\mathrm{q}+1) \mathrm{s}$.
2: Run an exact arithmetic Rayleigh-Ritz procedure to find the approximation $U_{W, k}$ of the top k left singular vectors of $W \in \mathbb{R}^{(a+1) s \times k}$ i.e. the projection of A into the orthonormal basis, $U_{K_{q}}$, of range $\left(\mathrm{K}_{\mathrm{q}}\right)$.
3: Return $\hat{U}_{k}=U_{K_{q}} U_{W, k} \in \mathbb{R}^{m \times k}$.

Theorem 2
Let $\phi(x)$ be a polynomial of degree $2 q+1$ with odd powers only such that $\phi\left(\boldsymbol{\Sigma}_{k}\right)$ is nonsingular, and $\phi\left(\sigma_{i}\right) \geq \sigma_{i}$ for $1 \leq i \leq k$. If $\operatorname{rank}\left(\mathbf{V}_{\mathbf{k}}^{\mathrm{T}} \mathbf{x}\right)=\mathrm{k}$,

$$
\left\|\mathbf{A}-\hat{\mathbf{U}}_{k} \hat{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{2, F} \leq\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{2, F}+\left\|\phi\left(\boldsymbol{\Sigma}_{k, \perp}\right)\right\|_{2}\left\|\tan \boldsymbol{\Theta}\left(\mathbf{X}, \mathbf{V}_{k}\right)\right\|_{F}
$$

Selecting the Polynomial $\phi(x)$

Gap-amplifying polynomials

A gap-amplifying polynomial satisfies the following three properties:
\checkmark the small values remain small,
\checkmark the large values are amplified, and
\checkmark the large values are growing super-linearly.
We use rescaled Chebyshev-based gap-amplifying polynomials of the form:

$$
\phi(x)=\frac{(1+\gamma) \alpha}{\psi_{q^{\prime}}(1+\gamma)} \psi_{q^{\prime}}(x / \alpha)
$$

where

$$
\gamma=\frac{\sigma_{k}-\sigma_{k+1}}{\sigma_{k+1}}
$$

$q^{\prime}=2 q+1, x \in[0, \alpha]$ and $\psi_{q^{\prime}}(x)$ is the Chebyshev polynomial of first kind.

Obtaining a Relative Error

Choice of the degree q

Let $\varepsilon>0$ be an accuracy parameter. If we select

$$
a \geq \frac{1}{2 \sqrt{\gamma}} \log _{2} \frac{4\left\|\tan \Theta\left(\mathbf{X}, \mathbf{V}_{k}\right)\right\|_{2}}{\varepsilon}
$$

where $\gamma=\frac{\sigma_{k}-\sigma_{k+1}}{\sigma_{k+1}}$, then the bounds of Theorem 2 become relative:

$$
\left\|\mathbf{A}-\hat{\mathbf{U}}_{k} \hat{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{2, F} \leq(1+\varepsilon) \sigma_{k+1}
$$

Remember that:

$$
\sigma_{k+1}=\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{2} \leq\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}
$$

Proof Techniques

Novelty
We combined:
\checkmark traditional Lanczos convergence analysis (Saa11), with
\checkmark optimal low-rank approximations via least squares problems (BDM11; BDM14).

Theorem 1 We connect principal angles with least squares residuals.
Theorem 2 We use least squares residuals to interpret orthogonal projections.

Open Problems

- Is it possible to drop the assumption that $\mathbf{V}_{k}^{\top} \mathbf{X}$ is full-rank?
- Are our bounds tight enough to be informative?
- Can our bounds be useful in implementing block-Lanczos type methods?

Publications

(Dri+18) P. Drineas, I. Ipsen, E. Kontopoulou, M. Magdon-lsmail, "Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces, in SIAM Journal on Matrix Analysis and Applications, 39(2):567-586

Roadmap

The TeraPCA library

Motivation

- PCA is a key tool in studying population structure in human genetics.
- Genetic datasets are continuously growing larger in size.
- Need of out-of-core implementations.
- Typical applications in genetics only require a very small number of PCs (e.g., 10) within a small accuracy (e.g., two-three digits).

What is TeraPCA

- C++ library for out-of-core PCA of large genetic datasets.
- TeraPCA computes the sought PCs by partially solving a symmetric eigenvalue problem.
- This eigenvalue problem is solved using Randomized Subspace Iteration.
- Randomized Subspace Iteration features block iteration thus allowing higher granularity in out-of-core settings.

Publications

(Bos+19) A. Bose, V. Kalantzis, E-M. Kontopoulou, M. Elkady, P. Paschou and P. Drineas, "ATeraPCA: a Fast and Scalable Software Package to Study Genetic Variation in Tera-scale Genotypes", in Oxford Bioinformatics, Vol. 35(19), pp. 3679-3683

Roadmap

Principal Component Analysis (PCA)

Definition
Given a centered matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ and the matrix $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$, we seek to find the vector $\mathbf{w}_{\text {opt }}$ that solves:

$$
\begin{array}{ll}
\underset{\mathbf{w} \in \mathbb{R}^{n}}{\operatorname{maximize}} & \mathbf{w}^{\top} \mathbf{A} \mathbf{w} \\
\text { subject to } & \|\mathbf{w}\|_{2}=1 \tag{2}
\end{array}
$$

The objective function of Problem (2) is the Rayleigh Quotient, R, and for PSD matrix like \mathbf{A} the maximum value of \mathbf{R} is the dominant eigenvalue while $\mathbf{w}_{\text {opt }}$ is the corresponding eigenvector.

Sparse PCA

Definition

Given a centered data matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$, the matrix $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$ and a parameter k, we seek to find the vector $\mathbf{w}_{\text {opt }}$ that solves:

$$
\begin{array}{cl}
\underset{\mathbf{w} \in \mathbb{R}^{n}}{\operatorname{maximize}} & \mathbf{w}^{\top} \mathbf{A} \mathbf{w} \\
\text { subject to } & \|\mathbf{w}\|_{0} \leq k \\
& \|\mathbf{w}\|_{2}=1 \tag{3}
\end{array}
$$

$\checkmark k$ enforces the sparsity of $\mathbf{w}_{\text {opt }}$, (at most k non-zero entries).
\checkmark NP-hard if k grows with n.
\checkmark Non-convex constraints.
\checkmark Common approaches: thresholding the top singular vector, convex relaxations of the constraints, semi-definite programming, . . .

Sparse PCA

Definition

Given a centered data matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$, the matrix $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$ and a parameter k, we seek to find the vector $\mathbf{w}_{\text {opt }}$ that solves:

$$
\begin{array}{ll}
\underset{\mathbf{w} \in \mathbb{R}^{n}}{\operatorname{maximize}} & \mathbf{w}^{\top} \mathbf{A} \mathbf{w} \\
\text { subject to } & \|\mathbf{w}\|_{1} \leq \sqrt{k}, \\
& \|\mathbf{w}\|_{2} \leq 1 \tag{4}
\end{array}
$$

\checkmark (convex) Λ_{1} relaxation of the sparsity constraint.
\checkmark convex relaxation of the 2-norm constraint.

Algorithm

Two-step algorithm:
(1) Compute a stationary point $\tilde{\mathbf{w}}_{\text {opt }}$.
(2) Invoke a randomized rounding strategy to compute $\hat{\mathbf{w}}_{\text {opt }}$.

Algorithm

Two-step algorithm:
(1) Compute a stationary point $\tilde{\mathbf{w}}_{\text {opt }}$.
(2) Invoke a randomized rounding strategy to compute $\hat{\mathrm{w}}_{\text {opt }}$.

How we find the stationary point - Projected Gradient Ascent
(1) Compute the gradient and make a gradient step.
(2) Project onto the l_{1} ball with radius \sqrt{k}.
(3) Repeat until a relative error threshold is reached.

Algorithm

Two-step algorithm:
(1) Compute a stationary point $\tilde{w}_{\text {opt }}$.
(2) Invoke a randomized rounding strategy to compute $\hat{\mathbf{w}}_{\text {opt }}$.

Input: $\mathbf{x} \in \mathbb{R}^{n}$, integer $s>0$.
Output: $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ with $\mathbf{E}\left[\|\hat{\mathbf{x}}\|_{0}\right] \leq s$.

1: for $i=1, \ldots, n$ do
2: $\quad p_{i}=\min \left\{\frac{s\left|\mathbf{x}_{i}\right|}{\|\mathbf{x}\|_{1}}, 1\right\}$
3: $\quad \hat{\mathbf{x}}_{i}= \begin{cases}\frac{1}{p_{i}} \mathbf{x}_{i}, & \text { with probability } p_{i} . \\ 0, & \text { otherwise. }\end{cases}$
4: end for

Addilive Error Approximation

Theorem

Let $\mathbf{w}_{\text {opt }}$ be the optimal solution of the Sparse PCA problem (2) satisfying $\left\|\mathbf{w}_{\text {opt }}\right\|_{2}=1$ and $\left\|\mathbf{w}_{\text {opt }}\right\|_{0} \leq k$. Let $\hat{\mathbf{w}}_{\text {opt }}$ be the vector returned when the rounding sparsification strategy is applied on the optimal solution $\tilde{\mathbf{w}}_{\text {opt }}$ of the optimization problem (3), with $s=200 k / \varepsilon^{2}$, where $\varepsilon \in(0,1]$ is an accuracy parameter. Then, $\hat{\mathbf{w}}_{\text {opt }}$ has the following properties:
(1) $\mathbf{E}\left[\left\|\hat{\mathbf{w}}_{\text {opt }}\right\|_{0}\right] \leq s$
(2) With probability at least $3 / 4$,

$$
\left\|\hat{\mathbf{w}}_{\text {opt }}\right\|_{2} \leq 1+0.15 \varepsilon
$$

(3) With probability at least $3 / 4$,

$$
\hat{\mathbf{w}}_{o p t}^{\top} \mathbf{A} \hat{\mathbf{w}}_{o p t} \geq \mathbf{w}_{o p t}^{\top} \mathbf{A} \mathbf{w}_{o p t}-\varepsilon
$$

Publications

(Fou+17) K. Fountoulakis, A. Kundu, E. Kontopoulou, P. Drineas, "A Randomized Rounding Algorithm for Sparse PCA", in the ACM Transactions on Knowledge Discovery from Data (TKDD), 11 (3):38

Thank you!

Questions?

References I

(AT11) Haim Avron and Sivan Toledo. "Randomized Algorithms for Estimating the Trace of an Implicit Symmetric Positive Semi-definite Matrix". In: Journal of the ACM 58.2 (2011), p. 8.
(BDM11) C. Boutsidis, P. Drineas, and M. Magdon-Ismail. " Near-optimal Column-based Matrix Reconstruction". In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science--FOCS 2011. IEEE Computer Soc., Los Alamitos, CA, 2011, pp. 305-314.
(BDM14) C. Boutsidis, P. Drineas, and M. Magdon-Ismail. "Near-optimal Column-based Matrix Reconstruction". In: SIAM J. Comput. 43.2 (2014), pp. 687-717.
(Bos+19) A. Bose et al. ' T TeraPCA: a Fast and Scalable Software Package to Study Genetic Variation in Tera-scale Genotypes"'. In: Bioinformatics 35.19 (2019), pp. 3679-3683.
(Bou+17) Christos Boutsidis et al. " A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix". In: Linear Algebra and its Applications 533 (2017), pp. 95-117.

References II

(dGJ07) A. d’Aspremont, L. El Ghaoui, and M. I. Jordan. "'A Direct Formulation for Sparse PCA using Semidefinite Programming". In: SIAM Review (2007), pp. 434-448.
(Dri+18) P. Drineas et al. "'Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces"'. In: SIAM Journal on Matrix Analysis and Applications 39 (2018), pp. 567-586.
(Fou+17) K. Fountoulakis et al. "A Randomized Rounding Algorithm for Sparce PCA". In: ACM Transactions on Knowledge Discovery from Data (TKDD) 11.3 (2017), pp. 1-26.
(Hig08) N. Higham. Functions of Matrices: Theory and Computation. Vol. 104. SIAM, 2008.
(Kon+18) E. Kontopoulou et al. ' 'Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices"'. In: 2018 IEEE International Symposium on Information Theory. 2018.
(Kon+20) E. Kontopoulou et al. "Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices"'. In: IEEE Transactions on Information Theory to appear (2020).

References III

(Saal 1) Y. Saad. Numerical Methods for Large Eigenvalue Problems. Revised. Classics in Applied Mathematics. Philadelphia: SIAM, 2011.
(Sjö+12) K. Sjöstrand et al. "Spasm: A matlab toolbox for sparse statistical modeling". In: Journal of Statistical Software (Accepted for publication). 2012.
(Tre11) L. Trevisan. Graph Partitioning and Expanders. Handout 7. 2011.

Appendix

Log-Based Matrix Functions

Mathematical Manipulation of $\mathcal{H}[\mathbf{R}]$ II

Using Taylor Series
Lemma
Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix whose eigenvalues all lie in the interval $(-1,1)$. Then,

$$
\log \left[\mathbf{I}_{n}-\mathbf{A}\right]=-\sum_{k=1}^{\infty} \frac{\mathbf{A}^{k}}{k}
$$

Given Lemma we can further manipulate $\mathcal{H}[\mathbf{R}]$ as:

$$
\begin{aligned}
\mathcal{H}[\mathbf{R}] & =-\operatorname{Tr}[\mathbf{R l o g}[\mathbf{R}]] \\
& =-\operatorname{Tr}\left[\operatorname{Rlog}\left[u u^{-1} \mathbf{R}\right]\right] \\
& =-\operatorname{Tr}[\log (u) \mathbf{R}]-\operatorname{Tr}\left[\mathbf{R l o g}\left[\mathbf{I}_{n}-\left(\mathbf{I}_{n}-u^{-1} \mathbf{R}\right)\right]\right] \\
& =\log \left(u^{-1}\right)-\operatorname{Tr}\left[-\mathbf{R} \sum_{k=1}^{\infty} \frac{\left(\mathbf{I}_{n}-u^{-1} \mathbf{R}\right)^{k}}{k}\right] \\
& =\log \left(u^{-1}\right)+\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left[\mathbf{R}\left(\mathbf{I}_{n}-u^{-1} \mathbf{R}\right)^{k}\right]}{k}
\end{aligned}
$$

Analysis of the Power Method

Boutsidis et al., LAA 2017 (Bou+17)

In (Bou+17) appears the following lemma that builds on (Trel1) and guarantees a relative error approximation to the dominant eigenvalue:

Lemma
Let \tilde{p}_{1} be the output of the Power Method algorithm with $q=\lceil 4.82 \log (1 / \delta)\rceil$ and $t=\lceil\log \sqrt{4 n}\rceil$. Then, with probability at least $1-\delta$,

$$
\frac{1}{6} p_{1} \leq \tilde{p}_{1} \leq p_{1}
$$

Analysis of the Power Method

Input: SPD $A \in \mathbb{R}^{n \times n}$, failure probability $\delta<1$ and integers $q=\lceil 4.82 \log (1 / \delta)\rceil$ and $t=$ $\lceil\log \sqrt{4 n}\rceil$.
Output: $\widehat{\lambda_{\max }(A)}$, the estimate of $\lambda_{\max }(A)$.
$1:$ for $i=1, \ldots, q$ do
2: Create uniformly at random a Rademacher vector $x_{0}^{(i)} \in \mathbb{R}^{n}$.
3: \quad for $k=1, \ldots, t$ do
4: $\quad x_{k}^{(i)}=A \cdot x_{k-1}^{(i)}$
5: end for
6: Compute $\widehat{\lambda_{\max }(A)}$ (i) as:

$$
\widehat{\max (A)}^{(i)}=\frac{x_{t}^{(i)^{\top}} A x_{t}^{(i)}}{x_{t}^{(i)^{\top}} x_{t}^{(i)}}
$$

7: end for
8: return $\widehat{\lambda_{\max }(A)}$ as:

$$
\widehat{\lambda_{\max }(A)}=\max _{i=1, \ldots, q}\left({\widehat{\lambda_{\max }(A)}}^{(i)}\right)
$$

Trace Estimators

Definition
A Gaussian trace estimator for a symmetric positive-definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is

$$
\mathbf{G}=\frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top} \mathbf{A} \mathbf{g}_{i}
$$

where the \mathbf{g}_{i} 's are p independent random vectors whose entries are i.i.d. standard normal variables.

Lemma
Let \mathbf{A} be an SPD matrix in $\mathbb{R}^{n \times n}$, let $0<\varepsilon<1$ be an accuracy parameter, and let $0<\delta<1$ be a failure probability. Then for $s=\left\lceil 20 \log (2 / \delta) \varepsilon^{-2}\right\rceil$, with probability at least $1-\delta$,

$$
|\operatorname{Tr}[\mathbf{A}]-\mathbf{G}| \leq \varepsilon \cdot \operatorname{Tr}[\mathbf{A}]
$$

Trace Estimators

Input: $\operatorname{SPD} A \in \mathbb{R}^{n \times n}$, accuracy parameter $\varepsilon<1$ and failure probability $\delta<1$. Output: $\operatorname{Tr}[A]$, the estimate of $\operatorname{Tr}[A]$.

1: Generate $s=\left\lceil 20 \log (2 / \delta) / \varepsilon^{2}\right\rceil$ i.i.d random Gaussian vectors, $g_{1}, g_{2}, \ldots, g_{s}$.
2: Compute $\widehat{\operatorname{Tr}[A]}$ as:

$$
\widehat{\operatorname{Tr}[A]}=\frac{1}{s} \sum_{i=1}^{s} g_{i}^{\top} A g_{i}
$$

Bounding the Absolute Error I

Taylor-based Algorithm

We manipulate $\Delta=|\widehat{\mathcal{H}[\mathbf{R}]}-\mathcal{H}[\mathbf{R}]|$ as follows:

$$
\begin{aligned}
\Delta & =\left|\sum_{k=1}^{m} \frac{1}{k} \cdot \frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top} \mathbf{R C}^{k} \mathbf{g}_{i}-\sum_{k=1}^{\infty} \frac{1}{k} \operatorname{Tr}\left[\mathbf{R} \mathbf{C}^{k}\right]\right| \\
& \leq\left|\sum_{k=1}^{m} \frac{1}{k} \cdot \frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top} \mathbf{R C}^{k} \mathbf{g}_{i}-\sum_{k=1}^{m} \frac{1}{k} \operatorname{Tr}\left[\mathbf{R} \mathbf{C}^{k}\right]\right|+\left|\sum_{k=m+1}^{\infty} \frac{1}{k} \operatorname{Tr}\left[\mathbf{R} \mathbf{C}^{k}\right]\right| \\
& =\underbrace{\left|\frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top}\left(\sum_{k=1}^{m} \mathbf{R C}^{k} / k\right) \mathbf{g}_{i}-\operatorname{Tr}\left[\sum_{k=1}^{m} \frac{1}{k} \mathbf{R} \mathbf{C}^{k}\right]\right|}_{\Delta_{1}}+\underbrace{\left|\sum_{k=m+1}^{\infty} \operatorname{Tr}\left[\mathbf{R} \mathbf{C}^{k}\right] / k\right|}_{\Delta_{2}}
\end{aligned}
$$

Bounding the Absolute Error II

Taylor-based Algorithm
After algebra we conclude:

$$
\Delta_{1} \leq \epsilon \cdot \operatorname{Tr}\left[\sum_{k=1}^{\infty} \mathbf{R C}^{k} / k\right]
$$

and

$$
\Delta_{2} \leq\left(1-\frac{\ell}{u}\right)^{m} \sum_{k=1}^{\infty} \operatorname{Tr}\left[\mathbf{R C}^{k}\right] / k
$$

Combining the two bounds we get:

$$
\begin{aligned}
|\widehat{\mathcal{H}[\mathbf{R}]}-\mathcal{H}[\mathbf{R}]| & \leq\left(\epsilon+\left(1-\frac{\ell}{u}\right)^{m}\right) \sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left[\mathbf{R C} \mathbf{C}^{k}\right]}{k} \\
& \leq\left(\epsilon+\left(1-\frac{\ell}{u}\right)^{m}\right)\left(\mathcal{H}[\mathbf{R}]-\log u^{-1}\right) \\
& \leq\left(\epsilon+\left(1-\frac{\ell}{u}\right)^{m}\right) \mathcal{H}[\mathbf{R}] \\
& \leq 2 \epsilon \mathcal{H}[\mathbf{R}]
\end{aligned}
$$

The Clenshaw Algorithm

The Clenshaw algorithm is a recursive procedure that evaluates fast Chebyshev polynomials:

Input: Coefficients $\alpha_{i}, i=0, \ldots, m$, matrix $R \in \mathbb{R}^{n \times n}$ and vectors $g \in \mathbb{R}^{n}$

1: Set $y_{m+2}=y_{m+1}=0$
2: for $k=m, m-1, \ldots, 0$ do
3: $\quad y_{k}=\alpha_{k} g+\frac{4}{u} R y_{k+1}-2 y_{k+1}-y_{k+2}$
4: end for
Output: $g^{\top} f_{m}(R) g=\frac{1}{2}\left(\alpha_{0}\left(g^{\top} g\right)+g^{\top}\left(y_{0}-y_{2}\right)\right)$

Experiment 1

Running Time

Random density matrices of size $5,000 \times 5,000$
\checkmark Matrix A: exponentially decaying probabilities.
\checkmark Matrix B: 1,000 linearly decaying probabilities.

Parameters

\checkmark Polynomial terms: $m=[5: 5: 30]$
\checkmark Gaussian vectors: $s=\{50,100,200,300\}$
\checkmark Largest probability: $u \approx \lambda_{\max }$

Notes

- Exact computation: 1.5 minutes.
- Approximation of $\lambda_{\max }$: <1 second.

Experiment 1

Relative Error

Parameters

\checkmark Polynomial terms: $m=[5: 5: 30]$
\checkmark Gaussian vectors: $s=\{50,100,200,300\}$
\checkmark Largest probability: $u \approx \lambda_{\max }$

Matrix A

Matrix B

Experiment 2

Random complex density matrix of size $5,000 \times 5,000$
\checkmark Polynomial terms: $m=[5: 5: 20]$
\checkmark Gaussian vectors: $s=\{50,100,200,300\}$

Experiment 2 cntn'd

Random complex density matrix of size $5,000 \times 5,000$
\checkmark Polynomial terms: $m=[5: 5: 20]$
\checkmark Gaussian vectors: $s=\{50,100,200,300\}$

Notes

- Exact computation: 52 seconds.

Mathematical Manipulation of logdet [A]

$$
\begin{aligned}
\operatorname{logdet}[\mathbf{A}] & =\log \operatorname{det}\left[\mathbf{U} \mathbf{\Lambda} \mathbf{u}^{\top}\right] \\
& =\log (\operatorname{det}[\mathbf{\Lambda}]) \\
& =\log \left(\prod_{i=1}^{n} \lambda_{i}\right) \\
& =\sum_{i=1}^{n} \log \left(\lambda_{i}\right) \\
& =\operatorname{Tr}[\log [\mathbf{A}]]
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Tr}[\log [\mathbf{A}]] & =\operatorname{Tr}\left[\log \left[\mathbf{I}_{n}-\mathbf{I}_{n}+\mathbf{A}\right]\right] \\
& =\operatorname{Tr}[\log [\mathbf{I}_{n}-\underbrace{\left(\mathbf{I}_{n}-\mathbf{A}\right)}_{\mathbf{C}}]] \\
& =\operatorname{Tr}\left[\log \left[\mathbf{I}_{n}-\mathbf{C}\right]\right] \\
& =\operatorname{Tr}\left[-\sum_{k=1}^{\infty} \frac{\mathbf{C}^{k}}{k}\right] \\
& =-\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left[\mathbf{C}^{k}\right]}{k}
\end{aligned}
$$

Additive Error Approximation I

Input: $A \in \mathbb{R}^{n \times n}$, accuracy parameter $\varepsilon>0$, integer $m>0$.
Output: logdet $[A]$, the approximation to the logdet $[A]$.

1: Compute $\tilde{\lambda}_{1}(A)$, the estimation of the largest eigenvalue of A, using the power method.
2: Set $u=7 \tilde{\lambda_{1}}(A)$
3: $C=I_{n}-u^{-1} A$
4: Generate $s=\left\lceil 20 \log (2 / \delta) / \varepsilon^{2}\right\rceil$ i.i.d random Gaussian vectors, $g_{1}, g_{2}, \ldots, g_{s}$.
5: Compute logdet $[A]$ as:

$$
\widehat{\operatorname{logdet}}[A]=n \log (u)-\sum_{k=1}^{m} \frac{1}{k}\left(\frac{1}{s} \sum_{i=1}^{s} g_{i}^{\top} C^{k} g_{i}\right)
$$

Relative Error Approximation

LogDetRelative Algorithm

Input: $A \in \mathbb{R}^{n \times n}$ with eigenvalues lie in $\left(\theta_{1}, 1\right)$ where $\theta_{1}>0$, accuracy parameter $\varepsilon>0$, integer $m>0$.
Output: logdet $[A]$, the approximation to logdet $[A]$.

1: $C=I_{n}-A$
2: Create $s=\left\lceil 20 \log (2 / \delta) / \varepsilon^{2}\right\rceil$ i.i.d random Gaussian vectors, $g_{1}, g_{2}, \ldots, g_{s}$.
3: Generate logdet $[A]$ as:

$$
\widehat{\operatorname{logdet}}[A]=\sum_{k=1}^{m} \frac{1}{k}\left(\frac{1}{s} \sum_{i=1}^{s} g_{i}^{\top} C^{k} g_{i}\right)
$$

Experiments

Parameters

\checkmark Polynomial terms: $m=4$.
\checkmark Gaussian vectors: $s=60$.

Experiments

Real Sparse Matrices
University of Florida Sparse Marrix Collection

Parameters

\checkmark Polynomial terms: $m=1: 5: 150$.
\checkmark Gaussian vectors: $s=5$.

matrix name	n	nnz	logdet [A]			time (sec)		m
			exact	approx		exact	approx	
				mean	std		mean	
thermal2	1228045	8580313	1.3869 e 6	1.3928 eb	964.79	31.28	31.24	149
ecology2	999999	4995991	3.3943 e 6	3.403e6	1212.8	18.5	10.47	125
Idoor	952203	42493817	1.4429 e 7	1.4445 e 7	1683.5	117.91	17.60	33
thermomech_TC	102158	711558	-546787	-546829.4	553.12	57.84	2.58	77
boneS01	127224	5516602	1.1093 e 6	1.106 e 6	247.14	130.4	8.48	125

TeraPCA

Randomized Subspace Iteration

Input: $A^{\top} \in \mathbb{R}^{n \times m}$, initial guess matrix $X_{0} \in \mathbb{R}^{m \times s}$ with elements drawn i.i.d. from the normal distribution $\mathcal{N}(0,1), k \geq 1$, and $s \geq k$.
Output: The k leading approximate left singular vectors of A.

1: $C=A\left(A^{\top} X_{0}\right)$
2: repeat
3: $\quad Q=\operatorname{orth}(C)$
4: $\quad C=A A^{\top} Q$
5: $\quad M=Q^{\top} C$
6: \quad Compute the eigenvalue decomposition $M=X D X^{\top}$
7: $\quad C=Q X$
8: until convergence
9: return first k columns of Q

Out-of-core MMV $\mathbf{C}=\mathbf{A}\left(\mathbf{A}^{\top} \mathbf{X}\right)$

Input: $\zeta>0, X \in \mathbb{R}^{m \times s}$.
Output: $C \in \mathbb{R}^{m \times s}$.

1: $C=0$
2: for $i=1: \zeta$ do
Fetch the i-th row-block of A^{\top}
$C=C+A_{i}\left(A_{i}^{\top} X\right)$
5: end for

Datasets \& Experimental Setup

- Approximate the top 10 PCs.
- Initial subspace size $s=20$.
- All our experiments ran at Purdue's Brown cluster on a dedicated node which features an Intel Xeon Gold 6126 @ 2.6 GHz processor, 96 GB RAM and 64-bit CentOS Linux 7 operating system.

Dataset	Size (.PED file)	Size (.BED file)	\# Samples	\# SNPs
S_{1} (simulated)	19 GB	120 MB	5,000	$1,000,000$
S_{2} (simulated)	38 GB	239 MB	10,000	$1,000,000$
S_{3} (simulated)	373 GB	24 GB	100,000	$1,000,000$
S_{4} (simulated)	1.9 TB	117 GB	500,000	$1,000,000$
S_{5} (simulated)	3.7 TB	233 GB	$1,000,000$	$1,000,000$
S_{6} (simulated)	38 GB	2.4 GB	100,000	100,000
S_{7} (simulated)	150 GB	9.4 GB	2,000	$20,000,000$
HGDP	615 MB	39 MB	1,043	154,417
1000 Genomes	8.4 GB	483 MB	2,504	808,704
PRK	2 GB	126 MB	4,706	111,831
T2D	1.8 GB	111 MB	6,370	72,457

Time Comparisons

* indicates no convergence after 50 hrs.

Max RAM size allowed: 2GB

Dataset	TeraPCA	FlashPCA2	Speed-up
S_{1}	26.2 mins	33.3 mins	1.27
S_{2}	39.3 mins	87.5 mins	2.22
S_{3}	7.9 hrs	35.6 hrs	4.50
S_{4}	7.3 hrs	$\mathrm{n} / \mathrm{a}^{*}$	∞
S_{5}	13.2 hrs	$\mathrm{n} / \mathrm{a}^{*}$	∞
S_{6}	39.5 mins	141.1 mins	3.57
S_{7}	37.3 mins	106.5 mins	2.86
HGDP	6.5 secs	7.7 secs	1.22
1000 Genomes	4.3 mins	3.5 mins	0.81
T2D	96 secs	119 secs	1.24
PRK	76 secs	73 secs	0.96

TeraPCA has an advantage over FlashPCA2 (which is based on Implicit Restarted Arnoldi) due to its block nature which allows to:

- search for multiple PCs simultaneously
- perform more computations per epoch
- take advantage of state-of-the-art dense linear algebra kernels (e.g., BLAS, LAPACK)

Speedup using Multi--hreading

Accuracy of Leading PCs

Element-wise relative error of the 10 leading PCs computed by TeraPCA versus those computed by LAPACK for the HGDP dataset.

Accuracy of Leading Eigenvalues

Accuracy of the 10 leading eigenvalues computed for TeraPCA and FlashPCA2.

eigenvalue index	relative error		eigenvalue	relative error	
	TeraPCA	FlashPCA2		FlashPCA2	
1	$9.91 \mathrm{E}-15$	$1.74 \mathrm{E}-03$	6	$3.01 \mathrm{E}-06$	$7.63 \mathrm{E}-04$
2	$1.02 \mathrm{E}-13$	$1.30 \mathrm{E}-03$	7	$3.36 \mathrm{E}-06$	$1.47 \mathrm{E}-03$
3	$5.65 \mathrm{E}-11$	$1.49 \mathrm{E}-03$	8	$1.04 \mathrm{E}-05$	$6.81 \mathrm{E}-04$
4	$2.18 \mathrm{E}-08$	$1.31 \mathrm{E}-03$	9	$7.11 \mathrm{E}-05$	$1.28 \mathrm{E}-03$
5	$2.65 \mathrm{E}-06$	$1.10 \mathrm{E}-03$	10	$1.74 \mathrm{E}-04$	$7.44 \mathrm{E}-04$

Sparse PCA

Experiments

Synthetic dataset

We test our algorithm (Naive \& SVD-based) with other SPCA software like MaxComp (Naive \& SVD-based) and Spasm (Sjö+12).

Pattern capture

(a) Actual eigenvector

(c) Spasm

(b) rspca

(d) MaxComp

Sparsity ratio vs Variance capture

Experiments

HGDP Chromosome 1: $m=2$, 500 samples, $n=37,493$ SNPs

Classic-2: $m=2,858$ documents $, n=12,427$ terms

Use of deflation for PC2. Complicated to guarantee orthogonality.

