
Randomized Numerical Linear Algebra Approaches for

Approximating Matrix Functions

Eugenia-Maria Kontopoulou

Department of Computer Science

Purdue University

Final Exam

Committee

Petros Drineas

David Gleich

Hemanta Maji

Kent Quanrud

Introduction

Matrix Functions

• Generalization of scalar function into

multiple dimensions.

• Multiple definitions [Hig08].

• We use the Jordan canonical form

definition.

• Consider positive semi-definite

matrices (PSD).

1 / 58

Introduction

Matrix Functions

• Generalization of scalar function into

multiple dimensions.

• Multiple definitions [Hig08].

• We use the Jordan canonical form

definition.

• Consider positive semi-definite

matrices (PSD).

1 / 58

Introduction

Matrix Functions

• Generalization of scalar function into

multiple dimensions.

• Multiple definitions [Hig08].

• We use the Jordan canonical form

definition.

• Consider positive semi-definite

matrices (PSD).

Jordan Canonical Form

ZAZ−1 = J = diag (J1, J2, . . . , Jp)

Jk = Jk (λk) =

λk 1

λk

. . .

. . . 1

λk

A ∈ Cn×n

: Input matrix.

J ∈ Cn×n
: Jordan matrix.

Z ∈ Cn×n
: non-singular matrix.

Jk ∈ Cmk×mk : k-th Jordan block.

λk : k-th eigenvalue of A.

1 / 58

Introduction

Matrix Functions

• Generalization of scalar function into

multiple dimensions.

• Multiple definitions [Hig08].

• We use the Jordan canonical form

definition.

• Consider positive semi-definite

matrices (PSD).

PSD Jordan Canonical Form

ZJZ−1 ≡ UΛU∗ ≡ UΣU∗

Any PSD matrix, A ∈ Cn×n
:

1 has only real eigenvalues,

0 ≤ λ1, λ2, . . . , λn;

2 has orthogonal eigenvectors, U;

3 is always diagonalizable :

A = U Λ U∗.

1 / 58

Introduction

Matrix Functions

• Generalization of scalar function into

multiple dimensions.

• Multiple definitions [Hig08].

• We use the Jordan canonical form

definition.

• Consider positive semi-definite

matrices (PSD).

PSD Jordan Canonical Form

ZJZ−1 ≡ UΛU∗ ≡ UΣU∗

Any PSD matrix, A ∈ Cn×n
:

1 has only real eigenvalues,

0 ≤ λ1, λ2, . . . , λn;

2 has orthogonal eigenvectors, U;

3 is always diagonalizable :

A = U Λ U∗.

f(·)

SVD(A)/ EIG(A)

PSD: A U f(Λ) U∗

1 / 58

The Big Data Problem in Numerical Linear Algebra

Modern Datasets

{
Large & Complex

High Dimensional & Noisy

Memory Issues

SVD/EIG require A in RAM!

Interpretation Issues

SVD represents observations as linear combination of features!

Performance Issues

SVD/EIG require O (n3) flops!

New Managing / Computing / Processing Methods

Reduce

Passes & Blocks in RAM
Fast Dimensionality Reduction

RandNLA techniques

2 / 58

The Big Data Problem in Numerical Linear Algebra

Modern Datasets

{
Large & Complex

High Dimensional & Noisy

Memory Issues

SVD/EIG require A in RAM!

Interpretation Issues

SVD represents observations as linear combination of features!

Performance Issues

SVD/EIG require O (n3) flops!

New Managing / Computing / Processing Methods

Reduce

Passes & Blocks in RAM
Fast Dimensionality Reduction

RandNLA techniques

2 / 58

The Big Data Problem in Numerical Linear Algebra

Modern Datasets

{
Large & Complex

High Dimensional & Noisy

Memory Issues

SVD/EIG require A in RAM!

Interpretation Issues

SVD represents observations as linear combination of features!

Performance Issues

SVD/EIG require O (n3) flops!

New Managing / Computing / Processing Methods

Reduce

Passes & Blocks in RAM
Fast Dimensionality Reduction

RandNLA techniques

2 / 58

The Big Data Problem in Numerical Linear Algebra

Modern Datasets

{
Large & Complex

High Dimensional & Noisy

Memory Issues

SVD/EIG require A in RAM!

Interpretation Issues

SVD represents observations as linear combination of features!

Performance Issues

SVD/EIG require O (n3) flops!

New Managing / Computing / Processing Methods

Reduce

Passes & Blocks in RAM
Fast Dimensionality Reduction

RandNLA techniques

2 / 58

The Big Data Problem in Numerical Linear Algebra

Modern Datasets

{
Large & Complex

High Dimensional & Noisy

Memory Issues

SVD/EIG require A in RAM!

Interpretation Issues

SVD represents observations as linear combination of features!

Performance Issues

SVD/EIG require O (n3) flops!

New Managing / Computing / Processing Methods

Reduce

Passes & Blocks in RAM
Fast Dimensionality Reduction

RandNLA techniques

2 / 58

The Big Data Problem in Numerical Linear Algebra

Modern Datasets

{
Large & Complex

High Dimensional & Noisy

Memory Issues

SVD/EIG require A in RAM!

Interpretation Issues

SVD represents observations as linear combination of features!

Performance Issues

SVD/EIG require O (n3) flops!

New Managing / Computing / Processing Methods

Reduce

Passes & Blocks in RAM
Fast Dimensionality Reduction

RandNLA techniques

2 / 58

The Big Data Problem in Numerical Linear Algebra

Modern Datasets

{
Large & Complex

High Dimensional & Noisy

Memory Issues

SVD/EIG require A in RAM!

Interpretation Issues

SVD represents observations as linear combination of features!

Performance Issues

SVD/EIG require O (n3) flops!

New Managing / Computing / Processing Methods

Reduce

Passes & Blocks in RAM
Fast Dimensionality Reduction

RandNLA techniques

2 / 58

The Big Data Problem in Numerical Linear Algebra

Modern Datasets

{
Large & Complex

High Dimensional & Noisy

Memory Issues

SVD/EIG require A in RAM!

Interpretation Issues

SVD represents observations as linear combination of features!

Performance Issues

SVD/EIG require O (n3) flops!

New Managing / Computing / Processing Methods

Reduce

Passes & Blocks in RAM
Fast Dimensionality Reduction

RandNLA techniques

2 / 58

The Big Data Problem in Numerical Linear Algebra

Modern Datasets

{
Large & Complex

High Dimensional & Noisy

Memory Issues

SVD/EIG require A in RAM!

Interpretation Issues

SVD represents observations as linear combination of features!

Performance Issues

SVD/EIG require O (n3) flops!

New Managing / Computing / Processing Methods

Reduce

Passes & Blocks in RAM
Fast Dimensionality Reduction

RandNLA techniques

2 / 58

Roadmap

Approximate

Matrix Functions

Log-Based

Matrix Functions

Low Rank

Matrix Approximations

Von-Neumann

Entropy
logdet(A)

Krylov Subspace

Methods
Sparse PCA

TeraPCA

Application

3 / 58

Log-Based Matrix Functions

Functions of Form

f (log (g (A))) = γ

where f(·) is a matrix or scalar function, g(·) is a matrix function, A ∈ Cn×n
is a PSD

and γ ∈ R.

4 / 58

Log-Based Matrix Functions

Functions of Form

f (log (g (A))) = γ

where f(·) is a matrix or scalar function, g(·) is a matrix function, A ∈ Cn×n
is a PSD

and γ ∈ R.

Von Neumann Entropy

H [A] = −Tr [Alog [A]]

f(X) = −Tr [X · exp [X]] : Cn×n → R
g(X) = X : Cn×n → Cn×n

4 / 58

Log-Based Matrix Functions

Functions of Form

f (log (g (A))) = γ

where f(·) is a matrix or scalar function, g(·) is a matrix function, A ∈ Cn×n
is a PSD

and γ ∈ R.

Von Neumann Entropy

H [A] = −Tr [Alog [A]]

f(X) = −Tr [X · exp [X]] : Cn×n → R
g(X) = X : Cn×n → Cn×n

Logarithm of Determinant

logdet [A] = log (det [A])

f(x) = x : R → R
g(X) = det [X] : Cn×n → R

4 / 58

Roadmap

Approximate

Matrix Functions

Log-Based

Matrix Functions

Low Rank

Matrix Approximations

Von-Neumann

Entropy
logdet(A)

Krylov Subspace

Methods
Sparse PCA

TeraPCA

Application

5 / 58

Von-Neumann Entropy Problem

Definition

Given a quantum system, compute (exactly or approximately) its Von-Neumann

Entropy.

Application: Information theory, quantum mechanics, . . .

What is the Von-Neumann Entropy?

X Extension of Gibbs/Shannon entropy concept in quantum mechanics.

X Described in 1932 by Von-Neumann in his book "Mathematische Grundlagen der

Quantenmechanik".

X Fundamental notion: Density Matrix.

6 / 58

Von-Neumann Entropy of Real Density Matrices I

Definition

A Density Matrix is represented by the statistical mixture of pure states and has the form

R =
n∑

i=1

piyiy
>
i = YΛpY> ∈ Rn×n,

where the vectors yi ∈ Rn
represent the pure states of a system and are pairwise

orthogonal and normal, while pi ’s correspond to the probability of each state and

satisfy pi > 0 and
∑

n

i=1
pi = 1.

7 / 58

Von-Neumann Entropy of Real Density Matrices II

Straightforward Computation

1 Compute the eigenvalues of R, p1, p2, . . . , pn (e.g. using eigendecomposition).

2 Compute the Von-Neumann Entropy of R using pi , i = 1, . . . , n:

H [R] = −
n∑

i=1

pi log pi

Time Complexity: O
(
n

3
)
.

8 / 58

Mathematical Manipulation of H [R]

Consider the function h(x) = x log(x) ∈ R.

h [R] = Rlog [R]

= YΣpY>log
[
YΣpY>

]
= YΣplog [Σp] Y>

= Yh [Σp] Y>

H [R] = −
n∑

i=1

pi log pi

= −Tr [h [Σp]]

= −Tr

[
Y>Yh [Σp]

]
= −Tr

[
Yh [Σp] Y>

]
= −Tr [h [R]]

Two Approaches

1 Using a Taylor expansion for the logarithm we can further manipulateH [R].

2 Approximate h [R] with Chebyshev Polynomials.

Two Randomized Numerical Linear Algebra tools

1 Power method with provable bounds [Bou+17; Tre11].

2 Randomized trace estimators [AT11].

9 / 58

Mathematical Manipulation of H [R]
Using Taylor Series

Lemma

Let R ∈ Rn×n
be a density matrix whose probabilities lie in the interval [`, u], for some

0 < ` ≤ u ≤ 1. Then,

H [R] = log (u
−1) +

∞∑
k=1

Tr
[
R(I− u

−1R)k
]

k︸ ︷︷ ︸
∆

We estimate the trace of R(I− u
−1R)k

using Gaussian trace estimator and ∆ by

truncation. The largest eigenvalue, u, is estimated using the power method with

provable bounds.

Gaussian Trace Estimator Lemma

Power Method Lemma

Proof

10 / 58

Relative Error Approximation

The Taylor-based Algorithm

Input: R ∈ Rn×n
, accuracy parameter ε > 0, integer m > 0.

Output: Ĥ [R], the approximation to theH [R].

1: Compute p̂1, the estimation of the largest singular value of R, using power method.

2: Set u = min{1, 6p̂1}
3: C = In − u

−1
R

4: Generate s = d20 log(2/δ)/ε2e i.i.d random Gaussian vectors, g1, g2, . . . , gs .

5: Compute Ĥ [R] as:

Ĥ [R] = log u
−1 +

1

s

s∑
i=1

m∑
k=1

g
>
i R C

k
gi

k

11 / 58

Relative Error Approximation

Bounding the Error & Running Time for the Taylor-based Algorithm

Theorem

Let R be a density matrix such that all probabilities pi , i = 1 . . . n satisfy 0 < ` ≤ pi . Let

u be computed using the power method and let Ĥ(R) be the output of the

Taylor-based Algorithm on inputs R, m, and ε < 1; Then, with probability at least 1− 2δ,∣∣∣Ĥ(R)−H [R]
∣∣∣ ≤ 2εH [R]

by setting m = d u

`
log (1/ε)e.

Running Time

O
(

u

`
· log (1/ε) log (1/δ)

ε2
· nnz (R) + log (n) · log (1/δ) · nnz (R)

)

Sketch of the Proof

12 / 58

Mathematical Manipulation of H [R]
Using Chebyshev Polynomials

Lemma

We can approximate h(x) = x log(x) in the interval (0, u] by

fm(x) =
m∑

w=0

αwTw (x)

where Tw (x) = cos(w · arccos((2/u)x − 1)), the Chebyshev polynomials of the first

kind for w > 0 and,

α0 =
u

2

(
log

u

4
+ 1

)
, α1 =

u

4

(
2 log

u

4
+ 3

)
, and αw =

(−1)w
u

w3 − w
for w ≥ 2

For any m ≥ 1,

|h(x)− fm(x)| ≤ u

2m(m + 1)
≤ u

2m2

for x ∈ [0, u].

13 / 58

Mathematical Manipulation of H [R]
Using Chebyshev Polynomials

Using the Lemma we approximateH(R) by Ĥ(R) as follows:

H(R) = −Tr [h [R]]

≈ −Tr [fm [R]]

≈ −1

s

s∑
i=1

g>i fm [R] gi

= Ĥ(R)

We estimate u using the power method and Tr [fm [R]] using a Gaussian trace

estimator. We compute the scalars g>i fm [R] gi using the Clenshaw algorithm.

Clenshaw Algorithm

14 / 58

Relative Error Approximation

The Chebyshev-based Algorithm

Input: R ∈ Rn×n
, accuracy parameter ε > 0, integer m > 0.

Output: Ĥ [R], the approximation to theH [R].

1: Compute p̂1, the estimation of the largest singular value of R, using power method.

2: Set u = min{1, 6p̂1}
3: Generate s = d20 log(2/δ)/ε2e i.i.d random Gaussian vectors, g1, g2, . . . , gs .

4: Compute Ĥ [R] as:

Ĥ [R] = −1

s

s∑
i=1

g
>
i fm(R)gi

15 / 58

Relative Error Approximation

Bounding the Error & Running Time for the Chebyshev-based Algorithm

Theorem

Let R be a density matrix such that all probabilities pi , i = 1 . . . n satisfy 0 < ` ≤ pi . Let

u be computed using the power method and let Ĥ(R) be the output of the

Chebyshev-based Algorithm on inputs R, m, and ε < 1; Then, with probability at least

1− 2δ, ∣∣∣Ĥ(R)−H [R]
∣∣∣ ≤ 3εH [R]

by setting m =
√

u

2ε` ln(1/(1−`))

Running Time

O
(√

u

`
·
√

1

log(1/(1− `))
· log(1/δ)

ε2.5
· nnz (R) + log(n) · log(1/δ) · nnz (R)

)

16 / 58

The Hermitian Case

Theorem

Every Hermitian matrix A ∈ Cn×n
can be expressed as

A = B + iC (1)

where B ∈ Rn×n
is symmetric and C ∈ Rn×n

is anti-symmetric (or skew-symmetric). If

A ∈ Cn×n
is positive semi-definite, then B is also positive semi-definite.

Theorem

The trace of a Hermitian matrix A ∈ Cn×n
expressed as in eqn. (1) is equal to the trace

of its real part:

Tr [A] = Tr [B]

Algorithmic design

• The trace estimator works for Hermitian PSD matrices.

• Taylor and Chebyshev polynomials work in complex space.

• No guarantees are known for power method→ set u = 1.

17 / 58

Low Rank Density Matrices

Assume that the density matrix R ∈ Rn×n
, has at most k non-zero probabilities, pi . This

means that at most k of its states are pure.

Issue & Solution

x n− k probabilities are zero→ Chebyshev/Taylor approaches are not working.

X Project to a smaller full-dimension space→ Random Projections.

X Fast construction of the random projector.

Construction of the Random Projector

• Gaussian Random Projector

• Sub-sampled Randomized Hadamard Transform

• Input Sparsity Transform

• Hartley Transform

18 / 58

Additive-Relative Approximation

Random Projection based Algorithm

Input: R ∈ Rn×n
, integer k � n.

Output: Ĥ(R), the approximation to theH [R].

1: Construct the random projection matrix Π ∈ Rn×s
.

2: Compute R̃ = RΠ ∈ Rn×s
.

3: Compute and return the (at most) k non-zero singular values of R̃, p̃i , i = 1 . . . k .

4: Compute Ĥ(R) as:

Ĥ(R) =
k∑

i=1

p̃i log
1

p̃i

19 / 58

Additive-Relative Approximation

Bounding the Error & Running Time for the Random Projection based Algorithm

Theorem

Let R be a density matrix with at most k � n non-zero probabilities and let ε < 1/2 be

an accuracy parameter. Then, with probability at least 0.9, the output of the Random

Projection based Algorithm satisfies∣∣p2

i − p̃
2

i

∣∣ ≤ ε · p2

i

for all i = 1 . . . k. Additionally,∣∣∣H(R)− Ĥ(R)
∣∣∣ ≤ √εH(R) +

√
3

2
ε

Running Time

Algorithm 4 (combined with the Input Sparsity Transform) runs in time

O
(
nnz (R) + nk4/ε4)

20 / 58

Experiments

Polynomial-based Algorithms

Matrix of size 30, 000× 30, 000, m = [5 : 5 : 20] and u ≈ λmax .

50 100 150 200

s

0%

0.5%

1%

R
e
la

ti
v
e
 e

rr
o
r

m=5

Taylor

Chebyshev

50 100 150 200

s

0%

0.5%

R
e
la

ti
v
e
 e

rr
o
r

m=10

Taylor

Chebyshev

50 100 150 200

s

0%

0.5%

R
e
la

ti
v
e
 e

rr
o
r

m=15

Taylor

Chebyshev

50 100 150 200

s

0%

0.5%

R
e
la

ti
v
e
 e

rr
o
r

m=20

Taylor

Chebyshev

s = [50 : 50 : 200]

s
50 100 200

T
i
m
e
(
m
i
n
)

0

20

40

60
m=5

Taylor

Chebyshev

s

50 100 200

T
i
m
e
(
m
i
n
)

0

20

40

60
m=10

Taylor

Chebyshev

s

50 100 200

T
i
m
e
(
m
i
n
)

0

20

40

60
m=15

Taylor

Chebyshev

s

50 100 200

T
i
m
e
(
m
i
n
)

0

20

40

60
m=20

Taylor

Chebyshev

s = {50, 100, 200}

Notes

• Exact computation: 5.6 hours.

• Approximation of λmax : 3.6 minutes.

21 / 58

Experiments

Random Projections based Algorithms

Matrix of size 4, 096× 4, 096 and k = {10, 50, 100, 300}.

400 600 800 1000

s

0%

0.1%

0.2%

0.3%

R
e

la
ti
v
e

 e
rr

o
r

k=10

Gaussian

Hadamard

Input Sparsity

400 600 800 1000

s

0%

0.1%

0.2%

0.3%

R
e

la
ti
v
e

 e
rr

o
r

k=50

Gaussian

Hadamard

Input Sparsity

400 600 800 1000

s

0%

0.1%

0.2%

0.3%

R
e

la
ti
v
e

 e
rr

o
r

k=100

Gaussian

Hadamard

Input Sparsity

400 600 800 1000

s

0%

0.1%

0.2%

0.3%

R
e

la
ti
v
e

 e
rr

o
r

k=300

Gaussian

Hadamard

Input Sparsity

s = {400, 600, 800, 1000}

k=10

300 350 400 450

s

0

1

2

3

4

T
im

e(
se

c)

Gaussian
Hadamard
Input sparsity

k=50

300 350 400 450

s

0

1

2

3

4

T
im

e(
se

c)

Gaussian
Hadamard
Input sparsity

k=100

300 350 400 450

s

0

1

2

3

4

T
im

e(
se

c)

Gaussian
Hadamard
Input sparsity

k=300

300 350 400 450

s

0

1

2

3

4

T
im

e(
se

c)

Gaussian
Hadamard
Input sparsity

s = [300 : 50 : 450]

Exact computation for various k .

k 10 50 100 300
Time 1.5 sec 8 sec 15 sec 1 min

More Experiments

22 / 58

Publications

[Kon+18] E. Kontopoulou, A. Grama, W. Szpankowski, P. Drineas, ‘‘Randomized Linear
Algebra Approaches to Estimate the Von Neumann Entropy of Density
Matrices’’, in Proceedings of the 2018 IEEE International Symposium on

Information Theory (ISIT), pp. 2486-2490

[Kon+20] E. Kontopoulou, G. Dexter, A. Grama, W. Szpankowski & P. Drineas, ‘‘Randomized
Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density
Matrices’’, in IEEE Transactions on Information Theory, to appear

23 / 58

Roadmap

Approximate

Matrix Functions

Log-Based

Matrix Functions

Low Rank

Matrix Approximations

Von-Neumann

Entropy
logdet(A)

Krylov Subspace

Methods
Sparse PCA

TeraPCA

Application

24 / 58

The problem of logdet [A]

Definition

Given a Symmetric Positive Definite (SPD) matrix A ∈ Rn×n
, compute (exactly or

approximately) logdet [A].

Application: Maximum likelihood estimations, Gaussian processes prediction,

logdet-divergence metric, barrier functions in interior point methods . . .

Straightforward Computation

1 Compute the Cholesky Factorization of A, and let L be the Cholesky factor.

2 Compute the log-determinant of A using L:

logdet [A] = logdet [L]2 = 2 log
n∏

i=1

lii = 2

n∑
i=1

log(lii) = 2Tr [log [L]]

Time Complexity: O
(
n

3
)

Mathematical Manipulation

25 / 58

Formulas

Additive Error Approximation

Let A ∈ Rn×n
be an SPD matrix whose dominant eigenvalue is bounded by α. Then,

logdet [A] ≈ n log(u)−
m∑

k=1

1

k

(
1

s

s∑
i=1

g>i
(
In − α−1A

)k

gi

)

26 / 58

Additive Error Approximation

Bounding the Error & Running Time

Lemma

Let ̂logdet [A] be the approximation of logdet [A] using the LogDetAdditive Algorithm

on inputs A, m and ε. Then, we prove that with probability at least 1− 2δ,

|̂logdet [A]− logdet [A] | ≤ 2ε

n∑
i=1

log (7 · κ (A))

setting m ≥ d7κ(A) log(1

ε
)e

Running Time

O
(

7 · κ(A) · 1

ε2
· log

(
1

ε

)
· log

(
1

δ

)
· nnz (A) + log n · log

(
1
δ

)
· nnz (A)

)

Additive Error Algrorithm

27 / 58

Formulas

Additive Error Approximation

Let A ∈ Rn×n
be an SPD matrix whose dominant eigenvalue is bounded by α. Then,

logdet [A] ≈ n log(u)−
m∑

k=1

1

k

(
1

s

s∑
i=1

g>i
(
In − α−1A

)k

gi

)

Relative Error Approximation

Let A ∈ Rn×n
be an SPD matrix whose eigenvalues lie in the interval (θ1, 1), for some

0 < θ1 < 1. Then,

logdet [A] ≈ −
m∑

k=1

1

k

(
1

s

s∑
i=1

g>i (In − A)k gi

)

Experiments

28 / 58

Relative Error Approximation

Bounding the Error & Running Time

Lemma

Let ̂logdet [A] be the approximation of logdet [A] using the LogDetRelative Algorithm

on inputs A, m and ε. Then, we prove that with probability at least 1− δ,

|̂logdet [A]− logdet [A] | ≤ 2ε · |logdet [A] |

and m ≥ d 1

θ1
· log(1

ε
)e

Running Time

O
(

1

θ1

· 1

ε2
· log

(
1

ε

)
· log

(
1

δ

)
· nnz (A)

)

Relative Error Algrorithm

29 / 58

Publications

[Bou+17] C. Boutsidis, P. Drineas, P. Kambadur, E. Kontopoulou, A. Zouzias, ‘‘A Randomized
Algorithm for Approximating the Log Determinant of a Symmetric Positive
Definite Matrix’’, in Linear Algebra and its Applications, 533, pp.95-117.

30 / 58

Roadmap

Approximate

Matrix Functions

Log-Based

Matrix Functions

Low Rank

Matrix Approximations

Von-Neumann

Entropy
logdet(A)

Krylov Subspace

Methods
Sparse PCA

TeraPCA

Application

31 / 58

Low Rank Matrix Approximations

Low Rank Approximation

Given an m× n matrix A and a rank parameter k � min{m, n}, the Low-Rank

Approximation problem is to find a matrix Z of rank k such that ‖A− Z‖2,F is sufficient

small.

Eckart-Young Theorem

The minimization problem:

min
rank(Z)=k

‖A− Z‖2,F

has a solution given by the truncated SVD:

Z = Ak = UkΣk V>k

We are interested in measuring the quality of the approximation to top singular

vectors and the extraction of meaningful sparse principal components.

32 / 58

Roadmap

Approximate

Matrix Functions

Log-Based

Matrix Functions

Low Rank

Matrix Approximations

Von-Neumann

Entropy
logdet(A)

Krylov Subspace

Methods
Sparse PCA

TeraPCA

Application

33 / 58

The Krylov Space

for Singular Vector Subspace Approximations

Given an arbitrary matrix A ∈ Rm×n
and a starting random guess X ∈ Rn×s

, we build

the Krylov space in AA> and AX:

Kq ≡ Kq(AA>,AX) = range
(

AX (AA>)AX . . . (AA>)qAX
)

Assumptions

1 We assume exact arithmetic (there are no issues of numerical stability).

2 The dimension of the Krylov Space is maximal: dim (Kq) = (q + 1)s.

3 σk > σk+1 > 0, where k is the number of singular vectors we seek to approximate

and σk (σk+1) is the k-th (k + 1-st) singular value of A.

34 / 58

Singular Gap

Why is it important?

Assume A ∈ Rm×n
and a positive integer k < rank (A). Let Uk be the top-k left

singular vectors of A. The objective is to construct approximations Ûk ∈ Rm×k
for Uk .

Dominant Subspace Reconstruction

We are interested in the angles between range (Uk) and range
(
Ûk
)
. This metric is well

defined only if Uk is unique.

Low Rank Approximation

We are interested in the approximation error between A and its projection into

range
(
Ûk
)
:

‖A− Ûk Ûk

>
A‖2,F

This metric is well-defined even if Uk is not unique.

35 / 58

Basic Notation

Dominant and Subdominant Spaces

Let A = UΣV> be the full SVD of A with U ∈ Rm×m
, Σ ∈ Rm×n

and V ∈ Rn×n
, then

for an integer 0 < k < rank (A) we can perform the following partitioning:

A = UkΣk V>k︸ ︷︷ ︸
dominant spaces

+ Uk,⊥Σk,⊥V>k,⊥︸ ︷︷ ︸
sub-dominant spaces

Principal Angles Matrix

Assume Uk ∈ Rm×k
and X ∈ Rm×s

, with orthonormal columns:

Principal Angles:
θi = cos−1(σi(U>k X))

Principal Angles Matrix:

Θ(Uk , X) = diag (θ1, θ2, . . . , θk) ∈ Rk×k

36 / 58

Space Reconstruction Results

Distance bound of Kq from range (Uk)

Theorem 1

Let φ(x) be a polynomial of degree 2q + 1 with odd powers only such that φ(Σk) is

nonsingular. If rank
(
VT

kX
)

= k, then,

‖ sinΘ(Kq, Uk)‖2,F ≤ ‖φ(Σk,⊥)‖2 ‖φ(Σk)−1‖2 ‖VT

k,⊥X(VT

k X)†‖2,F

If, in addition, X has orthornomal or linearly independent columns, then,

‖VT

k,⊥X(VT

k X)†‖2,F = ‖ tanΘ(X,Vk)‖2,F

and

‖ sinΘ(Kq, Uk)‖2,F ≤ ‖φ(Σk,⊥)‖2 ‖φ(Σk)−1‖2 ‖ tanΘ(X,Vk)‖2,F

37 / 58

Selecting the Starting Guess X

The starting guess X
The starting guess X can be any random matrix, e.g. random Gaussian, random sign,

sub-sampled randomized Hadamard transform.

RandNLA: bounds for ‖ tanΘ(X,Vk)‖2,F

Much work on RandNLA has been focused on bounding ‖ tanΘ(X,Vk)‖2,F using

matrix concentration inequalities (e.g. matrix Chernoff, matrix Bernstein, matrix

Hoeffding inequalities).

Full rank of V>
k X

It guarantees that range (Vk) and range (X) are sufficiently close and all principal

angles between them are less than π/2.

38 / 58

Exact Arithmetic Algorithm

to construct approximations for Uk from Kq

Input: A ∈ Rm×n
, starting guess X ∈ Rn×s

Target rank k < rank (A), and assume σk > σk+1

Block dimension q ≥ 1 with k ≤ (q + 1)s ≤ m

Output: Ûk ∈ Rm×k
with orthonormal columns

1: Set Kq =
(
AX (AA

>)AX · · · (AA
>)q

AX
)
∈ Rm×(q+1)s

,

and assume that rank (Kq) = (q + 1)s.

2: Run an exact arithmetic Rayleigh-Ritz procedure to find the approximation UW,k of

the top k left singular vectors of W ∈ R(q+1)s×k
i.e. the projection of A into the

orthonormal basis, UKq
, of range (Kq).

3: Return Ûk = UKq
UW,k ∈ Rm×k .

39 / 58

Low-rank Approximation Results

Quality of the approximation bounds

Theorem 2

Let φ(x) be a polynomial of degree 2q + 1 with odd powers only such that φ(Σk) is

nonsingular, and φ(σi) ≥ σi for 1 ≤ i ≤ k . If rank
(
VT

kX
)

= k,

‖A− Ûk ÛT

k A‖2,F ≤ ‖A− Uk U>k A‖2,F + ‖φ(Σk,⊥)‖2 ‖ tanΘ(X,Vk)‖F

40 / 58

Selecting the Polynomial φ(x)

Gap-amplifying polynomials

A gap-amplifying polynomial satisfies the following three properties:

X the small values remain small,

X the large values are amplified, and

X the large values are growing super-linearly.

We use rescaled Chebyshev-based gap-amplifying polynomials of the form:

φ(x) =
(1 + γ)α

ψq′(1 + γ)
ψq′(x/α)

where

γ =
σk − σk+1

σk+1

q
′ = 2q + 1, x ∈ [0, α] and ψq′(x) is the Chebyshev polynomial of first kind.

41 / 58

Obtaining a Relative Error

Choice of the degree q

Let ε > 0 be an accuracy parameter. If we select

q ≥ 1

2
√
γ

log
2

4‖ tanΘ(X,Vk)‖2

ε

where γ = σk−σk+1

σk+1
, then the bounds of Theorem 2 become relative:

‖A− Ûk ÛT

k A‖2,F ≤ (1 + ε)σk+1

Remember that:

σk+1 = ‖A− Uk Uk
T A‖2 ≤ ‖A− Uk Uk

T A‖F

42 / 58

Proof Techniques

Novelty

We combined:

X traditional Lanczos convergence analysis [Saa11], with

X optimal low-rank approximations via least squares problems [BDM11; BDM14].

Theorem 1 We connect principal angles with least squares residuals.

Theorem 2 We use least squares residuals to interpret orthogonal projections.

43 / 58

Open Problems

• Is it possible to drop the assumption that V>k X is full-rank?

• Are our bounds tight enough to be informative?

• Can our bounds be useful in implementing block-Lanczos type methods?

44 / 58

Publications

[Dri+18] P. Drineas, I. Ipsen, E. Kontopoulou, M. Magdon-Ismail, "Structural Convergence
Results for Approximation of Dominant Subspaces from Block Krylov Spaces, in

SIAM Journal on Matrix Analysis and Applications, 39(2):567-586

45 / 58

Roadmap

Approximate

Matrix Functions

Log-Based

Matrix Functions

Low Rank

Matrix Approximations

Von-Neumann

Entropy
logdet(A)

Krylov Subspace

Methods
Sparse PCA

TeraPCA

Application

46 / 58

The TeraPCA library

Motivation

• PCA is a key tool in studying population structure in human genetics.

• Genetic datasets are continuously growing larger in size.

• Need of out-of-core implementations.

• Typical applications in genetics only require a very small number of PCs (e.g., 10)

within a small accuracy (e.g., two-three digits).

What is TeraPCA

• C++ library for out-of-core PCA of large genetic datasets.

• TeraPCA computes the sought PCs by partially solving a symmetric eigenvalue

problem.

• This eigenvalue problem is solved using Randomized Subspace Iteration.

• Randomized Subspace Iteration features block iteration thus allowing higher

granularity in out-of-core settings.

47 / 58

TeraPCA in a Nutshell

Algorithms

Experiments

48 / 58

Publications

[Bos+19] A. Bose, V. Kalantzis, E-M. Kontopoulou, M. Elkady, P. Paschou and P. Drineas,

‘‘ATeraPCA: a Fast and Scalable Software Package to Study Genetic Variation in
Tera-scale Genotypes’’, in Oxford Bioinformatics, Vol. 35(19), pp. 3679-3683

49 / 58

Roadmap

Approximate

Matrix Functions

Log-Based

Matrix Functions

Low Rank

Matrix Approximations

Von-Neumann

Entropy
logdet(A)

Krylov Subspace

Methods
Sparse PCA

TeraPCA

Application

50 / 58

Principal Component Analysis (PCA)

Definition

Given a centered matrix X ∈ Rm×n
and the matrix A = X>X, we seek to find the

vector wopt that solves:

maximize
w∈Rn

w>A w

subject to ‖w‖2 = 1

(2)

The objective function of Problem (2) is the Rayleigh Quotient, R, and for PSD

matrix like A the maximum value of R is the dominant eigenvalue while wopt is the

corresponding eigenvector.

51 / 58

Sparse PCA

D’Aspremont et al., SIAM Review [dGJ07]

Definition

Given a centered data matrix X ∈ Rm×n
, the matrix A = X>X and a parameter k , we

seek to find the vector wopt that solves:

maximize
w∈Rn

w>A w

subject to ‖w‖0 ≤ k

‖w‖2 = 1

(3)

X k enforces the sparsity of wopt , (at most k non-zero entries).

X NP-hard if k grows with n.

X Non-convex constraints.

X Common approaches: thresholding the top singular vector, convex relaxations of

the constraints, semi-definite programming, . . .

52 / 58

Sparse PCA

Fountoulakis et al., ACM TKDD [Fou+17]

Definition

Given a centered data matrix X ∈ Rm×n
, the matrix A = X>X and a parameter k , we

seek to find the vector wopt that solves:

maximize
w∈Rn

w>A w

subject to ‖w‖1 ≤
√

k,

‖w‖2 ≤ 1

(4)

X (convex) l1 relaxation of the sparsity constraint.

X convex relaxation of the 2-norm constraint.

53 / 58

Algorithm

Two-step algorithm:

1 Compute a stationary point w̃opt .

2 Invoke a randomized rounding strategy to compute ŵopt .

53 / 58

Algorithm

Two-step algorithm:

1 Compute a stationary point w̃opt .

2 Invoke a randomized rounding strategy to compute ŵopt .

How we find the stationary point - Projected Gradient Ascent

1 Compute the gradient and make a gradient step.

2 Project onto the l1 ball with radius
√

k .

3 Repeat until a relative error threshold is reached.

53 / 58

Algorithm

Two-step algorithm:

1 Compute a stationary point w̃opt .

2 Invoke a randomized rounding strategy to compute ŵopt .

Input: x ∈ Rn
, integer s > 0.

Output: x̂ ∈ Rn
with E [‖x̂‖0] ≤ s.

1: for i = 1, . . . , n do

2: pi = min
{

s|xi |
‖x‖1

, 1
}

3: x̂i =

{
1

pi
xi , with probability pi .

0, otherwise.

4: end for

53 / 58

Additive Error Approximation

Bounding the Error

Theorem

Let wopt be the optimal solution of the Sparse PCA problem (2) satisfying ‖wopt‖2 = 1

and ‖wopt‖0 ≤ k. Let ŵopt be the vector returned when the rounding sparsification

strategy is applied on the optimal solution w̃opt of the optimization problem (3), with

s = 200k/ε2
, where ε ∈ (0, 1] is an accuracy parameter. Then, ŵopt has the following

properties:

1 E [‖ŵopt‖0] ≤ s

2 With probability at least 3/4,

‖ŵopt‖2 ≤ 1 + 0.15ε

3 With probability at least 3/4,

ŵ>opt Aŵopt ≥ w>opt Awopt − ε

Experiments

54 / 58

Publications

[Fou+17] K. Fountoulakis, A. Kundu, E. Kontopoulou, P. Drineas, ‘‘A Randomized Rounding
Algorithm for Sparse PCA’’, in the ACM Transactions on Knowledge Discovery

from Data (TKDD), 11(3):38

55 / 58

Thank you!

Questions?

References I

[AT11] Haim Avron and Sivan Toledo. ‘‘Randomized Algorithms for Estimating the

Trace of an Implicit Symmetric Positive Semi-definite Matrix’’. In: Journal of

the ACM 58.2 (2011), p. 8.

[BDM11] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. ‘‘Near-optimal

Column-based Matrix Reconstruction’’. In: 2011 IEEE 52nd Annual

Symposium on Foundations of Computer Science--FOCS 2011. IEEE

Computer Soc., Los Alamitos, CA, 2011, pp. 305-314.

[BDM14] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. ‘‘Near-optimal

Column-based Matrix Reconstruction’’. In: SIAM J. Comput. 43.2 (2014),

pp. 687-717.

[Bos+19] A. Bose et al. ‘‘TeraPCA: a Fast and Scalable Software Package to Study

Genetic Variation in Tera-scale Genotypes’’. In: Bioinformatics 35.19 (2019),

pp. 3679-3683.

[Bou+17] Christos Boutsidis et al. ‘‘A Randomized Algorithm for Approximating the

Log Determinant of a Symmetric Positive Definite Matrix’’. In: Linear Algebra

and its Applications 533 (2017), pp. 95-117.

56 / 58

References II

[dGJ07] A. d’Aspremont, L. El Ghaoui, and M. I. Jordan. ‘‘A Direct Formulation for

Sparse PCA using Semidefinite Programming’’. In: SIAM Review (2007),

pp. 434-448.

[Dri+18] P. Drineas et al. ‘‘Structural Convergence Results for Approximation of

Dominant Subspaces from Block Krylov Spaces’’. In: SIAM Journal on Matrix

Analysis and Applications 39 (2018), pp. 567-586.

[Fou+17] K. Fountoulakis et al. ‘‘A Randomized Rounding Algorithm for Sparce PCA’’.

In: ACM Transactions on Knowledge Discovery from Data (TKDD) 11.3

(2017), pp. 1-26.

[Hig08] N. Higham. Functions of Matrices: Theory and Computation. Vol. 104. SIAM,

2008.

[Kon+18] E. Kontopoulou et al. ‘‘Randomized Linear Algebra Approaches to Estimate

the Von Neumann Entropy of Density Matrices’’. In: 2018 IEEE International

Symposium on Information Theory. 2018.

[Kon+20] E. Kontopoulou et al. ‘‘Randomized Linear Algebra Approaches to Estimate

the Von Neumann Entropy of Density Matrices’’. In: IEEE Transactions on

Information Theory to appear (2020).

57 / 58

References III

[Saa11] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Revised.

Classics in Applied Mathematics. Philadelphia: SIAM, 2011.

[Sjö+12] K. Sjöstrand et al. ‘‘Spasm: A matlab toolbox for sparse statistical modeling’’.

In: Journal of Statistical Software (Accepted for publication). 2012.

[Tre11] L. Trevisan. Graph Partitioning and Expanders. Handout 7. 2011.

58 / 58

Appendix

Log-Based Matrix Functions

Mathematical Manipulation of H [R] II

Using Taylor Series

Lemma

Let A ∈ Rn×n
be a symmetric matrix whose eigenvalues all lie in the interval (−1, 1).

Then,

log [In − A] = −
∞∑

k=1

Ak

k

Given Lemma we can further manipulateH [R] as:

H [R] = −Tr [Rlog [R]]

= −Tr
[
Rlog

[
uu
−1R
]]

= −Tr [log(u)R]− Tr
[
Rlog

[
In − (In − u

−1R)
]]

= log(u
−1)− Tr

[
−R

∞∑
k=1

(In − u
−1R)k

k

]

= log(u
−1) +

∞∑
k=1

Tr
[
R(In − u

−1R)k
]

k

Back to Main Slides

Analysis of the Power Method

Boutsidis et al., LAA 2017 [Bou+17]

In [Bou+17] appears the following lemma that builds on [Tre11] and guarantees a

relative error approximation to the dominant eigenvalue:

Lemma

Let p̃1 be the output of the Power Method algorithm with q = d4.82 log(1/δ)e and

t =
⌈
log
√

4n
⌉
. Then, with probability at least 1− δ,

1

6
p1 ≤ p̃1 ≤ p1

Analysis of the Power Method

Power Method Algorithm

Input: SPD A ∈ Rn×n, failure probability δ < 1 and integers q = d4.82 log(1/δ)e and t =⌈
log
√

4n
⌉

.

Output: ̂λmax(A), the estimate of λmax(A).

1: for i = 1, . . . , q do

2: Create uniformly at random a Rademacher vector x
(i)
0
∈ Rn.

3: for k = 1, . . . , t do

4: x
(i)
k

= A · x(i)
k−1

5: end for

6: Compute ̂λmax(A)
(i)

as:

̂λmax(A)
(i)

=
x

(i)
t

>
A x

(i)
t

x
(i)
t

>
x

(i)
t

7: end for
8: return ̂λmax(A) as:

̂λmax(A) = max
i=1,...,q

(̂λmax(A)
(i)

).

Back to Main Slides

Trace Estimators

Avron & Toledo 2011 [AT11]

Definition

A Gaussian trace estimator for a symmetric positive-definite matrix A ∈ Rn×n
is

G =
1

s

s∑
i=1

g>i A gi ,

where the gi ’s are p independent random vectors whose entries are i.i.d. standard

normal variables.

Lemma

Let A be an SPD matrix in Rn×n
, let 0 < ε < 1 be an accuracy parameter, and let

0 < δ < 1 be a failure probability. Then for s = d20 log(2/δ)ε−2e, with probability at

least 1− δ,

|Tr [A]− G| ≤ ε · Tr [A]

Trace Estimators

Gaussian Trace Estimation Algorithm

Input: SPD A ∈ Rn×n
, accuracy parameter ε < 1 and failure probability δ < 1.

Output: T̂r [A], the estimate of Tr [A].

1: Generate s = d20 log(2/δ)/ε2e i.i.d random Gaussian vectors, g1, g2, . . . , gs .

2: Compute T̂r [A] as:

T̂r [A] =
1

s

s∑
i=1

g
>
i A gi

Back to Main Slides

Bounding the Absolute Error I

Taylor-based Algorithm

We manipulate ∆ =
∣∣∣Ĥ [R]−H [R]

∣∣∣ as follows:

∆ =

∣∣∣∣∣
m∑

k=1

1

k
· 1

s

s∑
i=1

g>i RCk gi −
∞∑

k=1

1

k
Tr
[
RCk
]∣∣∣∣∣

≤

∣∣∣∣∣
m∑

k=1

1

k
· 1

s

s∑
i=1

g>i RCk gi −
m∑

k=1

1

k
Tr
[
RCk
]∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=m+1

1

k
Tr
[
RCk
]∣∣∣∣∣

=

∣∣∣∣∣1s
s∑

i=1

g>i

(
m∑

k=1

RCk/k

)
gi − Tr

[
m∑

k=1

1

k
RCk

]∣∣∣∣∣︸ ︷︷ ︸
∆1

+

∣∣∣∣∣
∞∑

k=m+1

Tr
[
RCk
]
/k

∣∣∣∣∣︸ ︷︷ ︸
∆2

Bounding the Absolute Error II

Taylor-based Algorithm

After algebra we conclude:

∆1 ≤ ε · Tr

[
∞∑

k=1

RCk/k

]
,

and

∆2 ≤
(

1− `

u

)m ∞∑
k=1

Tr
[
RCk
]
/k

Combining the two bounds we get:∣∣∣Ĥ [R]−H [R]
∣∣∣ ≤ (ε+

(
1− `

u

)m) ∞∑
k=1

Tr
[
RCk
]

k

≤
(
ε+

(
1− `

u

)m)(
H [R]− log u

−1
)

≤
(
ε+

(
1− `

u

)m)
H [R]

≤ 2εH [R]

Back to Main Slides

The Clenshaw Algorithm

The Clenshaw algorithm is a recursive procedure that evaluates fast Chebyshev

polynomials:

Input: Coefficients αi , i = 0, . . . ,m, matrix R ∈ Rn×n
and vectors g ∈ Rn

1: Set ym+2 = ym+1 = 0

2: for k = m,m− 1, . . . , 0 do
3: yk = αk g + 4

u
Ryk+1 − 2yk+1 − yk+2

4: end for
Output: g

>
fm(R)g = 1

2

(
α0(g

>
g) + g

>(y0 − y2)
)

Back to Main Slides

Experiment 1

Running Time

Random density matrices of size 5, 000× 5, 000

X Matrix A: exponentially decaying probabilities.

X Matrix B: 1, 000 linearly decaying probabilities.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

i

0

0.2

0.4

0.6

0.8

1

1.2

i

10-3 Eigenvalue Distribution

Matrix A
Matrix B

u
max

NTE 50 100 200 300

p

0

2

4

6

8

10

12

14

16

T
im

e(
se

c)

Taylor
Chebyshev

Parameters

X Polynomial terms: m = [5 : 5 : 30]

X Gaussian vectors: s = {50, 100, 200, 300}
X Largest probability: u ≈ λmax

Notes

• Exact computation: 1.5 minutes.

• Approximation of λmax : < 1 second.

Experiment 1

Relative Error

Parameters

X Polynomial terms: m = [5 : 5 : 30]

X Gaussian vectors: s = {50, 100, 200, 300}
X Largest probability: u ≈ λmax

5 10 15 20 25 30

Taylor terms

0%

5%

10%

R
el

at
iv

e
er

ro
r

u
max

NTE
p=50
p=100
p=200
p=300

5 10 15 20 25 30

Chebyshev terms

0%

5%

10%

R
el

at
iv

e
er

ro
r

u
max

NTE
p=50
p=100
p=200
p=300

Matrix A

5 10 15 20 25 30

Taylor terms

0%

1%

2%

3%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

5 10 15 20 25 30

Chebyshev terms

0%

1%

2%

3%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

Matrix B

Experiment 2

Random complex density matrix of size 5, 000× 5, 000

X Polynomial terms: m = [5 : 5 : 20]

X Gaussian vectors: s = {50, 100, 200, 300}

5 10 15 20 25 30

Taylor terms

0%

0.5%

1%

1.5%

R
e
la

ti
v
e
 e

rr
o

r

Taylor-based Approximation

NTE

s=50

s=100

s=200

s=300

5 10 15 20 25 30

Chebyshev terms

0%

1%

2%

3%

R
e
la

ti
v
e
 e

rr
o
r

Chebyshev-based Approximation

NTE

s=50

s=100

s=200

s=300

Experiment 2 cntn’d

Random complex density matrix of size 5, 000× 5, 000

X Polynomial terms: m = [5 : 5 : 20]

X Gaussian vectors: s = {50, 100, 200, 300}

Taylor-based Approximation

NTE 50 100 200 300

Gaussian Vectors

0

20

40

60

80

100

120

140

T
im

e
(s

e
c
)

m=5

m=10

m=15

m=20

m=25

m=30

Exact

Chebyshev-based Approximation

NTE 50 100 200 300

Gaussian vectors

0

100

200

300

400

500

600

700

T
im

e
(s

e
c
)

m=5

m=10

m=15

m=20

m=25

m=30

Exact

Notes

• Exact computation: 52 seconds.

Back to Main Slides

Mathematical Manipulation of logdet [A]

logdet [A] = logdet
[
U Λ U>

]
= log (det [Λ])

= log

(
n∏

i=1

λi

)

=
n∑

i=1

log(λi)

= Tr [log [A]]

Tr [log [A]] = Tr [log [In − In + A]]

= Tr

log

In − (In − A)︸ ︷︷ ︸
C

= Tr [log [In − C]]

= Tr

[
−
∞∑

k=1

Ck

k

]

= −
∞∑

k=1

Tr
[
Ck
]

k

Back to Main Slides

Additive Error Approximation I

LogDetAdditive Algorithm

Input: A ∈ Rn×n
, accuracy parameter ε > 0, integer m > 0.

Output: ̂logdet [A], the approximation to the logdet [A].

1: Compute λ̃1(A), the estimation of the largest eigenvalue of A, using the power

method.

2: Set u = 7λ̃1(A)
3: C = In − u

−1
A

4: Generate s = d20 log(2/δ)/ε2e i.i.d random Gaussian vectors, g1, g2, . . . , gs .

5: Compute ̂logdet [A] as:

̂logdet [A] = n log (u)−
m∑

k=1

1

k

(
1

s

s∑
i=1

g
>
i C

k
gi

)

Back to Main Slides

Relative Error Approximation

LogDetRelative Algorithm

Input: A ∈ Rn×n
with eigenvalues lie in (θ1, 1) where θ1 > 0, accuracy parameter

ε > 0, integer m > 0.

Output: ̂logdet [A], the approximation to logdet [A].

1: C = In − A

2: Create s = d20 log(2/δ)/ε2e i.i.d random Gaussian vectors, g1, g2, . . . , gs .

3: Generate ̂logdet [A] as:

̂logdet [A] =
m∑

k=1

1

k

(
1

s

s∑
i=1

g
>
i C

k
gi

)

Back to Main Slides

Experiments

Dense Random Matrices

Parameters

X Polynomial terms: m = 4.

X Gaussian vectors: s = 60.

0.5 1 1.5

Size(n) 10
4

4.6%

4.7%

R
e
la

ti
v
e
 E

rr
o

r

Relative Error Time Comparison

5000 7500 10000 12500 15000

Size(n)

0

10

20

30

40

50

60

T
im

e
(s

e
c
)

exact

approximation

Experiments

Real Sparse Matrices

University of Florida Sparse Matrix Collection

Parameters

X Polynomial terms: m = 1 : 5 : 150.

X Gaussian vectors: s = 5.

matrix name n nnz
logdet [A] time (sec)

m
exact

approx
exact

approx
mean std mean

thermal2 1228045 8580313 1.3869e6 1.3928e6 964.79 31.28 31.24 149

ecology2 999999 4995991 3.3943e6 3.403e6 1212.8 18.5 10.47 125

ldoor 952203 42493817 1.4429e7 1.4445e7 1683.5 117.91 17.60 33

thermomech_TC 102158 711558 -546787 -546829.4 553.12 57.84 2.58 77

boneS01 127224 5516602 1.1093e6 1.106e6 247.14 130.4 8.48 125

Back to Main Slides

TeraPCA

Randomized Subspace Iteration

Input: A
> ∈ Rn×m

, initial guess matrix X0 ∈ Rm×s
with elements drawn i.i.d. from the

normal distributionN (0, 1), k ≥ 1, and s ≥ k .

Output: The k leading approximate left singular vectors of A.

1: C = A(A
>

X0)
2: repeat
3: Q = orth(C)
4: C = AA

>
Q

5: M = Q
>

C

6: Compute the eigenvalue decomposition M = XDX
>

7: C = QX

8: until convergence

9: return first k columns of Q

Out-of-core MMV C = A(A>X)

Input: ζ > 0, X ∈ Rm×s
.

Output: C ∈ Rm×s
.

1: C = 0
2: for i = 1 : ζ do
3: Fetch the i-th row-block of A

>

4: C = C + Ai(A
>
i X)

5: end for

Back to Main Slides

Datasets & Experimental Setup

• Approximate the top 10 PCs.

• Initial subspace size s = 20.

• All our experiments ran at Purdue’s Brown cluster on a dedicated node which

features an Intel Xeon Gold 6126 @ 2.6 GHz processor, 96 GB RAM and 64-bit

CentOS Linux 7 operating system.

Dataset Size (.PED file) Size (.BED file) # Samples # SNPs

S1 (simulated) 19 GB 120 MB 5,000 1,000,000

S2 (simulated) 38 GB 239 MB 10,000 1,000,000

S3 (simulated) 373 GB 24 GB 100,000 1,000,000

S4 (simulated) 1.9 TB 117 GB 500,000 1,000,000

S5 (simulated) 3.7 TB 233 GB 1,000,000 1,000,000

S6 (simulated) 38 GB 2.4 GB 100,000 100,000

S7 (simulated) 150 GB 9.4 GB 2,000 20,000,000

HGDP 615 MB 39 MB 1,043 154,417

1000 Genomes 8.4 GB 483 MB 2,504 808,704

PRK 2 GB 126 MB 4,706 111,831

T2D 1.8 GB 111 MB 6,370 72,457

Time Comparisons

Comparison with FlashPCA2

∗ indicates no convergence after 50 hrs.

Max RAM size allowed: 2GB

Dataset TeraPCA FlashPCA2 Speed-up

S1 26.2 mins 33.3 mins 1.27

S2 39.3 mins 87.5 mins 2.22

S3 7.9 hrs 35.6 hrs 4.50

S4 7.3 hrs n/a∗ ∞
S5 13.2 hrs n/a∗ ∞
S6 39.5 mins 141.1 mins 3.57

S7 37.3 mins 106.5 mins 2.86

HGDP 6.5 secs 7.7 secs 1.22

1000 Genomes 4.3 mins 3.5 mins 0.81

T2D 96 secs 119 secs 1.24

PRK 76 secs 73 secs 0.96

TeraPCA has an advantage over FlashPCA2 (which is based on Implicit Restarted

Arnoldi) due to its block nature which allows to:

• search for multiple PCs simultaneously

• perform more computations per epoch

• take advantage of state-of-the-art dense linear algebra kernels (e.g., BLAS,

LAPACK)

Speedup using Multi-threading

Accuracy of Leading PCs

200 400 600 800 1000

10
-10

10
-5

10
0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

PC9

PC10

Element-wise relative error of the 10 leading PCs computed by TeraPCA versus those computed

by LAPACK for the HGDP dataset.

Accuracy of Leading Eigenvalues

Accuracy of the 10 leading eigenvalues computed for TeraPCA and FlashPCA2.

eigenvalue relative error eigenvalue relative error

index TeraPCA FlashPCA2 index TeraPCA FlashPCA2

1 9.91E-15 1.74E-03 6 3.01E-06 7.63E-04

2 1.02E-13 1.30E-03 7 3.36E-06 1.47E-03

3 5.65E-11 1.49E-03 8 1.04E-05 6.81E-04

4 2.18E-08 1.31E-03 9 7.11E-05 1.28E-03

5 2.65E-06 1.10E-03 10 1.74E-04 7.44E-04

Back to Main Slides

Sparse PCA

Experiments

Synthetic dataset

We test our algorithm (Naive & SVD-based) with other SPCA software like MaxComp
(Naive & SVD-based) and Spasm [Sjö+12].

Pattern capture

(a) Actual eigenvector (b) rspca

(c) Spasm (d) MaxComp

Sparsity ratio vs Variance capture

0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Synthetic Dataset 27 212

rspca (SVD-based)

Spasm (SVD-based)

MaxComp (SVD-based)

rspca (naive)

Spasm (naive)

MaxComp (naive)

Experiments

HGDP Chromosome 1: m = 2, 500 samples, n = 37, 493 SNPs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Chromosome 1

 rspca (SVD-based)

Spasm (SVD-based)

MaxComp (SVD-based)

rspca (naive)

Spasm (naive)

MaxComp (naive)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

6

8

10

12

14

16

18

20

22

ti
m

e
 (

s
e

c
)

Chromosome 1

rspca

Spasm

MaxComp

Experiments

Classic-2: m = 2, 858 documents , n = 12, 427 terms

0 2000 4000 6000 8000 10000 12000

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Variance of the 1st PC

svd

cvx

rspca

maxcomp

spasm

Sparsity for PC1

100 500 1000 1500 2000 4000 8000 10500

0

10

20

30

40

50

60

70

80

90

100

gradient ascent

rspca

0 2000 4000 6000 8000 10000 12000

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Variance of the 2nd PC

svd

cvx

rspca

maxcomp

spasm

Sparsity for PC2

100 500 1000 1500 2000 4000 8000 10500

0

10

20

30

40

50

60

70

80

90

100

gradient ascent

rspca

Use of deflation for PC2. Complicated to guarantee orthogonality.

Back to Main Slides

	Introduction
	Log-Based Matrix Functions
	Entropy
	Log-Determinants

	Low Rank Approximations
	Low Rank Approximations from Block Krylov-Subspace Methods
	TeraPCA
	Sparse PCA

	References
	Appendix

